Search Options
Home Publication Explainers Statistics Payments Career Monetary Policy
Suggestions
Sort by
Níl an t-ábhar seo ar fáil i nGaeilge.

Catherine Doz

11 September 2006
WORKING PAPER SERIES - No. 674
Details
Abstract
This paper considers quasi-maximum likelihood estimations of a dynamic approximate factor model when the panel of time series is large. Maximum likelihood is analyzed under different sources of misspecification: omitted serial correlation of the observations and cross-sectional correlation of the idiosyncratic components. It is shown that the effects of misspecification on the estimation of the common factors is negligible for large sample size (T) and the cross sectional dimension (n). The estimator is feasible when n is large and easily implementable using the Kalman smoother and the EM algorithm as in traditional factor analysis. Simulation results illustrate what are the empirical conditions in which we can expect improvement with respect to simple principle components considered by Bai (2003), Bai and Ng (2002), Forni, Hallin, Lippi, and Reichlin (2000, 2005b), Stock and Watson (2002a,b).
JEL Code
C51 : Mathematical and Quantitative Methods→Econometric Modeling→Model Construction and Estimation
C32 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Time-Series Models, Dynamic Quantile Regressions, Dynamic Treatment Effect Models, Diffusion Processes
C33 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Panel Data Models, Spatio-temporal Models

Úsáideann ár suíomh gréasáin fianáin

Bainimid úsáid as fianáin fheidhmiúla chun roghanna úsáideora a stóráil; fianáin tríú páirtí arna socrú ag seirbhísí tríú páirtí atá comhtháite sa suíomh gréasáin.

Tá sé de rogha agat glacadh leo nó iad a dhiúltú. Le haghaidh tuilleadh faisnéise nó chun athbhreithniú a dhéanamh ar do rogha maidir leis na fianáin agus na logaí freastalaí a úsáidimid, iarraimid ort an méid seo a leanas a dhéanamh:

Léigh ár ráiteas príobháideachais

Faigh tuilleadh eolais faoin gcaoi a n-úsáidimid fianáin