Suchoptionen
Startseite Medien Wissenswertes Forschung und Publikationen Statistiken Geldpolitik Der Euro Zahlungsverkehr und Märkte Karriere
Vorschläge
Sortieren nach
Nicht auf Deutsch verfügbar.

Richard Schnorrenberger

22 April 2024
WORKING PAPER SERIES - No. 2930
Details
Abstract
We study how millions of granular and weekly household scanner data combined with machine learning can help to improve the real-time nowcast of German inflation. Our nowcasting exercise targets three hierarchy levels of inflation: individual products, product groups, and headline inflation. At the individual product level, we construct a large set of weekly scanner-based price indices that closely match their official counterparts, such as butter and coffee beans. Within a mixed-frequency setup, these indices significantly improve inflation nowcasts already after the first seven days of a month. For nowcasting product groups such as processed and unprocessed food, we apply shrinkage estimators to exploit the large set of scanner-based price indices, resulting in substantial predictive gains over autoregressive time series models. Finally, by adding high-frequency information on energy and travel services, we construct competitive nowcasting models for headline inflation that are on par with, or even outperform, survey-based inflation expectations.
JEL Code
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
C55 : Mathematical and Quantitative Methods→Econometric Modeling→Modeling with Large Data Sets?
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
Network
Price-setting Microdata Analysis Network (PRISMA)

Unsere Website verwendet Cookies.

Wir verwenden Funktionscookies zur Speicherung von Nutzerpräferenzen, Analysecookies zur Verbesserung der Website-Performance sowie Drittanbieter-Cookies, die von Diensten Dritter, die in die Website integriert sind, gesetzt werden.

Sie können die Cookies annehmen oder ablehnen. Für weitere Informationen oder um die Einstellungen für die von uns verwendeten Cookies und Serverprotokolle zu ändern, verweisen wir Sie auf die folgenden Webseiten:

Unsere Datenschutzerklärung

Unsere Verwendung von Cookies