Otsingu valikud
Avaleht Meedia Suunaviidad Uuringud & väljaanded Statistika Rahapoliitika Euro Maksed & turud Töövõimalused
Soovitused
Sorteeri
Ei ole eesti keeles kättesaadav

Kai Carstensen

22 April 2024
WORKING PAPER SERIES - No. 2930
Details
Abstract
We study how millions of granular and weekly household scanner data combined with machine learning can help to improve the real-time nowcast of German inflation. Our nowcasting exercise targets three hierarchy levels of inflation: individual products, product groups, and headline inflation. At the individual product level, we construct a large set of weekly scanner-based price indices that closely match their official counterparts, such as butter and coffee beans. Within a mixed-frequency setup, these indices significantly improve inflation nowcasts already after the first seven days of a month. For nowcasting product groups such as processed and unprocessed food, we apply shrinkage estimators to exploit the large set of scanner-based price indices, resulting in substantial predictive gains over autoregressive time series models. Finally, by adding high-frequency information on energy and travel services, we construct competitive nowcasting models for headline inflation that are on par with, or even outperform, survey-based inflation expectations.
JEL Code
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
C55 : Mathematical and Quantitative Methods→Econometric Modeling→Modeling with Large Data Sets?
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
Network
Price-setting Microdata Analysis Network (PRISMA)

Meie veebilehel kasutatakse küpsiseid

Kasutame tehnilisi küpsiseid kasutajaeelistuste salvestamiseks, analüütilisi küpsiseid veebilehe toimimise parandamiseks ning kolmandate osapoolte küpsiseid, mille on kindlaks määranud veebilehele integreeritud kolmandate isikute teenused.

Teil on võimalus anda küpsiste kasutamiseks nõusolek või sellest keelduda. Täiendava teabe saamiseks ning kasutatavate küpsiste ja logiteabega seotud eelistuste uuendamiseks palume tutvuda järgmiste dokumentidega:

Isikuandmete kaitse põhimõtteid

Küpsiste kasutamine