Search Options
Home Media Explainers Research & Publications Statistics Monetary Policy The €uro Payments & Markets Careers
Suggestions
Sort by

Matthieu Droumaguet

22 May 2015
WORKING PAPER SERIES - No. 1794
Details
Abstract
We derive restrictions for Granger noncausality in Markov-switching vector autoregressive models and also show under which conditions a variable does not affect the forecast of the hidden Markov process. Based on Bayesian approach to evaluating the hypotheses, the computational tools for posterior inference include a novel block Metropolis-Hastings sampling algorithm for the estimation of the restricted models. We analyze a system of monthly US data on money and income. The test results in MS-VARs contradict those in linear VARs: the money aggregate M1 is useful for forecasting income and for predicting the next period
JEL Code
C11 : Mathematical and Quantitative Methods→Econometric and Statistical Methods and Methodology: General→Bayesian Analysis: General
C12 : Mathematical and Quantitative Methods→Econometric and Statistical Methods and Methodology: General→Hypothesis Testing: General
C32 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Time-Series Models, Dynamic Quantile Regressions, Dynamic Treatment Effect Models, Diffusion Processes
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E32 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Business Fluctuations, Cycles

Our website uses cookies

We use functional cookies to store user preferences; analytics cookies to improve website performance; third-party cookies set by third-party services integrated into the website.

You have the choice to accept or reject them. For more information or to review your preference on the cookies and server logs we use, we invite you to:

Read our privacy statement

Learn more about how we use cookies