
1

SMCube Information Model

Table of contents
1. Introduction 3
1.1 SMCube use cases 3
1.2 SMCube Information Model requirements 3
1.3 Contents of this document 3
2. Metaclasses 4
3. Core package 5
3.1 Definition of core package elements 5
3.1.1 Domain 5
3.1.2 Member 6
3.1.3 Subdomain 6
3.1.4 Variable 6
3.1.5 Variable set 6
3.1.6 Member hierarchy 6
3.1.7 Member hierarchy node 7
3.1.8 Facet collection and facet item 7
4. Data definition 7
4.1 Definition of the data definition elements 8
4.1.1 Framework 8
4.1.2 Cube 8
4.1.3 Cube group 9
4.1.4 Cube structure 9
4.1.5 Cube structure item 9
4.1.6 Combination and combination item 10
5. Mapping package 11
5.1 Definition of mapping package elements 11
5.1.1 Mapping definition 11
5.1.2 Variable mapping item 12
5.1.3 Equivalence table item 12
5.1.4 Mapping set 12
5.1.5 Associations 12
5.1.5.1. Cube mapping to cube 12

2

5.1.5.2. Variable mapping item to variable 13
5.1.5.3. Equivalence table item to variable or member 13
6. Rendering package 13
6.1 Definition of rendering package elements 14
6.1.1 Table 14
6.1.2 Axis 14
6.1.3 Axis ordinate 15
6.1.4 Table cell 15

3

1. Introduction
 This document describes the Information Model of the Single Multidimensional Metadata Model
(SMCube), which was developed by the European Central Bank to produce its Single Data Dictionary
(SDD) and the Banks’ Integrated Reporting Dictionary (BIRD).

The objective of this information model is to define an abstract model that is able to describe the
structure of any type of dataset and some of the attached characteristics (such as dataset exchanges or
transformation), regardless of the purpose of the collection.
 The SMCube methodology serves as the basis for the construction of metadata and provides the
structure for metadata-driven systems. The metadata, constructed in line with the SMCube methodology,
can serve as parameters for the system, so that the definition and management of new datasets is as
parametrised as possible from the start, resulting in enhanced collaboration between datasets and in the
minimisation of new IT developments.

1.1 SMCube use cases
 Currently, many different modelling methodologies are used for defining datasets (SDMX,
DPM/XBRL, etc.), this situation is not expected to change in the medium term. Given that the
methodologies provide the basis for describing the datasets, different datasets described on the basis of
different methodologies is a clear obstacle to data integration.

SMCube establishes a new level of abstraction in addition to these approaches in order to
facilitate the joint use of different datasets.

1.2 SMCube Information Model requirements
 The SMCube Information Model accounts for requirements on both a technical and business
basis. The following requirements have been identified to satisfy the use case described in the previous
paragraph:

• Use as metadata layer for metadata-driven systems: provides system-compatible structural
information, assisting information managers and end users

• Compatibility with other standards, such as DPM and SDMX: covers the greatest array of
datasets and supports industry sponsored models

• Business users-driven: reflects the business needs of end users
• Historisation: follows the changes in time of defined datasets
• Complex mappings: integrate existing dictionaries and create links between similar information
• Extensibility: gives the possibility of other organisations implementing the SMCube methodology

and making use of the definitions provided by the ECB in the SDD

1.3 Contents of this document
 The SMCube Information Model describes artefacts by outlining their properties and purposes, it
is defined in terms of UML-class diagrams, structuring the entities and the relationships between them.
 Packages are at the basis of the SMCube Information Model, they describe specific aspects of
the model, for each of them a class diagram and a definition of each encompassed entity is provided.
Finally, a global perspective is given with a full overview of the capabilities and services described in the
model.

4

2. Metaclasses
The SMCube contains five custom data types (metaclasses) to define basic characteristics and attributes
of its entities:

- Identifier: contains a unique identifier for each
element in the entity.

- Naming: contains a combination of the mandatory code and name, and optional description.

- Maintainer: contains the ID of the maintenance agency in charge of maintaining the entry.

- Version: contains mandatory time-based historisation attributes (valid_from and valid_to) and a
versioning attribute (version). The version class deals with major and minor changes (see
Versioning concepts) via these three attributes.

-identifier[1] : String

«type»
Generic::Identifier

-code[1] : String
-name[0..1] : String
-description[0..1] : String

«type»
Generic::Naming

-maintenance_agency[1] : String

«type»
Generic::Maintainer

-validFrom[1] : Date
-validTo[1] : Date
-major_version_number[1] : String
-minor_version_number[1] : String

«type»
Generic::Version

5

3. Core package
 The aim of the core package is to provide the elements that describe the reality of data. Several
abstraction layers are used for this purpose. For example, datasets are composed of variables, which are
then populated with information. The core package allows such variables to be described, as well as the
information that they will contain.

DL_Core

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer
versionable[1] : Version

Variable Set

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Variable

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer
is_reference[1] : Boolean
data_type[0..1] : String

Domain

identifiable[1] : String
nameable[1] : Naming
maintainable[1] : Maintainer
versionable[1] : Version

Subdomain

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Member

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer
value_type[1] : String

Facet Collection

0..*

0..1

1

0..*

0..1

0..*

1

0..*

0..*

0..*

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Member Hierarchy

level[1] : Number
comparator[0..1] : String
operator[0..1] : String
versionable[1] : Version

Member Hierarchy Node

1

1..*

0..*

1

0..*

-h
as

 p
ar

en
t

0.
. 1

nameable[1] : Naming
maintainable[1] : Maintainer
facet_type[1] : String
observation_value[1..*] : String

Facet Item

1

0..*

Figure 1: Core package

3.1 Definition of core package elements

3.1.1 Domain
 A domain represents the categories of reality in which the information can be organised.
Examples of domains are geographical areas or currencies. They can be enumerated (i.e. contain a list of

6

members or a list of variables for a measure dimension), represent a list of facets (i.e. a list of rules, such
as minimum length, data type, or a pattern), or both.

• Must be identifiable, nameable and maintainable.

3.1.2 Member
 A member represents a single meaning or a value. For example, for the variable “country”, a
possible member would be “ES” for Spain. A member could also be a default value (e.g. “-1” for non-
reported).

• Must be identifiable, nameable and maintainable.

3.1.3 Subdomain
 A subdomain is a restriction of a domain, delimitating the possibilities through facets or enabling
the creation of lists of members that can be used in a variable. For example, a list of countries with the
euro as a currency is a subdomain of the geographical area domain, thereby confining the list of
countries to those which use the euro.

• Must be identifiable, nameable and maintainable.

• It will either contain a list of members or a facet.

• The list of members is historised.

3.1.4 Variable
 A variable adds meaning to a domain. For instance, the member “ES” may be used with different
meanings, depending on the variables, which can, for example, be the fair value, net value or the
“country of residence of the debtor” or “country of location of activities”. In terms of implementing a
dataset, the variable will typically be a column in a table.

• Must be identifiable, nameable and maintainable.

• May be part of zero or more variable sets (a superset of variables).

3.1.5 Variable set
A variable set is a superset of variables, grouping together variables, where necessary.

• Must be identifiable, nameable and maintainable.

3.1.6 Member hierarchy
 Members can be part of a hierarchy. This enables relationships between members to be created
and subsequently used for analysis and definition.

7

 It is possible to define several hierarchies for each domain where the rule is that each node can
have only one parent member (except the root that does not have a parent member).

• Must be identifiable, nameable and maintainable.

3.1.7 Member hierarchy node
 A member hierarchy node is a member within the context of a hierarchy. Each node belongs to a
specific hierarchy level, and has a parent member (except for the top level of a hierarchy tree). For each
node, it is possible to define the operator to be used to perform operations amongst the siblings and the
comparator operator to be used on the parent member to compare with its children’s operation result.
For example it is possible to define a parent member in the hierarchy with the “>=” comparator for a list
of children, whereby the operator attribute is equal to “+”; this expresses a rule that the parent member
has to be greater or equal to the sum of its children.

• Must be historised.

• Contains the attribute level (hierarchy level), comparator (symbol marking the
interdependency between other elements in the hierarchy), and operator.

3.1.8 Facet collection and facet item
 A facet enables the restriction of non-enumerated fields and the casting of variables when
attributed to a subdomain or a domain.

• Must be identifiable, nameable and maintainable. A facet is composed of zero or more facet
items.

• Each facet item is maintainable and nameable, and contains the attributes facet_type (valid
format of the facet) and observation_value (valid content for the defined format – one or
more).

4. Data definition
 The data definition package defines the structure of the cubes (datasets) described, and groups
them into frameworks.

8

DL_DataDefinition

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer
versionable[1] : Version

Cube Structure

identifiable[1] : Identifier
nameable[1] : Naming
order[1] : Number
cube_variable_code[1] : String

Cube Structure Item

1 0..*

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer
versionable[1] : Version
cube_type[0..1] : String
is_allowed[1] : Boolean

Cube

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Framework

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Cube Group

0..* 1

1

1..*

0..*

0..*

0..*

0..*

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Combination

1 0..*

dimension_type[1] : String

Dimension
is_flow[1] : Boolean
is_mandatory[1] : Boolean

Observation Value

is_flow[1] : Boolean
is_mandatory[1] : Boolean
attribute_associated_variable[1] : String

Attribute

Can refer exclusively to
one Subdomain or
one Variable Set

→ to Member

→to Variable
→to Variable Set
→to Subdomain

0..1

0..1
0..1

0..1

0..*
0..*
0..*
0..*

→ to Member

→to Variable

→to Variable Set

→to Subdomain

0..1

0..1

0..1

1

0..*

0..*

0..*

0..*

versionable[1]

Combination Item

Figure 2: Data definition package

4.1 Definition of the data definition elements

4.1.1 Framework
 The framework is typically a regulation or mandate for which datasets are collected, e.g.
AnaCredit. It contains cubes describing the structure of the different datasets which belong to the
regulation.

• Must be identifiable, nameable and maintainable.

4.1.2 Cube
 A cube is the description of a certain dataset. It is the central element of the SMCube. A cube is
typically implemented as a table in a database or as a data exchange artefact.

• Must be identifiable, nameable, maintainable and versionable.

• Must be part of a framework.

• Each cube may have a type associated to it: C (collection); P (production); D (dissemination);
or S (staging).

• May be restricted by combinations containing one or more combination items.

9

• The attribute “is allowed” defines whether the combinations associated with the cube
represent the allowed values (regions or data points) for the cubes, or the “not allowed”
values.1

4.1.3 Cube group
 A cube group is a collection of cubes defined by the user to facilitate navigation in a variety of
cubes. They do not reflect the grouping associated with the framework.

• Must be identifiable, nameable and maintainable.

4.1.4 Cube structure
 A cube structure is the collection of structural elements (cube structure items) defining the
multidimensional structure of a cube. Different cubes can be based on different subsets of elements of
the same cube structure.

• Must be identifiable, nameable, maintainable and versionable.

4.1.5 Cube structure item
 Each item represents a variable (field), which has a specific role (observation value, dimension
or attribute), and is associated with a list of possible elements via a subdomain, an implicit member and,
only in the case of measure dimensions, a variable set or an implicit variable.

There are three types of cube structure items according to their role:

• Dimension: these represent identifiers of the cube, similarly to primary keys if the cube is
represented in a database table. If the cube is conceptualised as a mathematical function, the
dimensions are the independent variable.

• Observation value: these are the items that provide information on the full set of dimensions.
In mathematical terms, they are the dependent variable, which adopts a value for each
combination of values for the dimensions of the cube.

• Attribute: these provide additional information on a single dimension or observation value.
So they are dependent variables, but they depend on a single element (that can be a
dimension or variable), while the observation values depend on the combination of all the
values for the dimensions.

Additionally, a dimension will be one of four types:

1 See SDMX similar concept in https://sdmx.org/wp-content/uploads/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf (line

2008).

https://sdmx.org/wp-content/uploads/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf

10

• Time dimension: this is the dimension or dimensions that provide the information about the time
in the cube. Typically, it is a reference period for dynamic data, or valid from and valid to for
registries or static data.

• Unit dimension: this is the dimension that represents the statistical unit being analysed, or the
subject of the information. For instance, in cubes that represent information about banks, the unit
is the dimension that specifies the bank to which the information refers.

• Measure dimension: in some cubes, the characteristics of the dimensions, normally represented
by the observation values, are folded into a single variable, normally called the observation value
or fact. In such cases, there is a dimension that specifies the meaning of the observation value,
and that is the measure dimension. Measure dimensions are the only cube structure items that are
associated with a variable set (or an implicit variable) instead of a subdomain (or implicit
member).

• Breakdown dimension: dimensions that are not one of the types above.
The characteristics of the cube structure item are:

• Must be identifiable and nameable.

• The attribute “order” is mandatory and defines the order of elements within a cube structure.

• The attribute “cube_variable_code” represents the code of the variable in the implementation
of the cube. It is linked to the distribution of the dataset.

• For observation values and attributes: the “is_mandatory” indicates whether the element must
appear in the cube. The “is_flow” indicates whether a variable contains “stock” or “flow”
values.

4.1.6 Combination and combination item
 Cubes define, through the cube structure items, a multidimensional space where, in principle, all
combinations of “allowed” values are possible. Combinations serve to restrict this space by listing the
“allowed” or the “not allowed” combinations of a cube.

When combinations list the “allowed” combinations in the form of pairs, such as dimension/member,
they are comparable to “time series” in SDMX and “data point” in the DPM.

• Must contain one or more combination items.

• Each combination item represents a combination of a variable, a member and a subdomain, or
another member. It inherits the maintenance agency of the combination.

11

5. Mapping package
 The mapping package is responsible for linking different codification systems. The links are
realised at the levels of variables, cubes and members in a variable.

DL_Mapping

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer
versionable[1] : Version
cube_type[0..1] : String
is_allowed[1] : Boolean

Cube

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Variable

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer

Member

identifiable[1] : Identifier
nameable[1] : Naming
maintainable[1] : Maintainer
mapping_type[1] : String

Mapping Definition

equivalence_table_name[1] : String

Equivalence

identifiable[1] : Identifier
versionable[1] : Version
equivalence_table_row[1] : Number

Equivalence Table Item

versionable[1] : Version

Variable Mapping Item

1

1..*

1

0..*

0..*

-h
as

 so
ur

ce
 c

ub
e

1

0..*

-h
as

 so
ur

ce
 v

ar
ia

bl
e(

s)

1..*

0..*

-h
as

 d
es

tin
at

io
n

va
ria

bl
e

0..*

0..*
-h

as
 so

ur
ce

 m
em

be
r

1..*

0..*

-h
as

 d
es

tin
at

io
n

cu
be

1

algorithm_name[1] : String
algorithm_steps[1] : String

Algorithm

mapping_set_name[1] : String

Observation ValueDeletion

1

1..*

identifiable[1] : Identifier
versionable[1] : Version

Cube Mapping

1..*

1

0..*

-h
as

 so
ur

ce
 v

ar
ia

bl
e

0..*

0..*

-h
as

 d
es

tin
at

io
n

m
em

be
r

1..*

Each mapping definition has
only one mapping_type

0..*

-h
as

 d
es

tin
at

io
n

va
ria

bl
e(

s)

0..*

Core
Package

Data Definition
Package

Figure 3: Structural metadata - mapping package

5.1 Definition of mapping package elements

5.1.1 Mapping definition
 Each mapping definition describes the existence of a full equivalence, from variable(s) in a
source to variable(s) in a destination cube (cube mapping). There are four types of mappings: D
(deletion), A (algorithm), E (equivalence), and O (observation value). They are subtypes of the mapping
definition.

12

- Deletion mapping: serves to eliminate one variable from the source cube in the destination cube.
- Algorithm mappings: can be used to map non-listed variables. The algorithm needs to be defined

within the mapping.
- Equivalence mappings: map listed variables, according to the content of an equivalence table.

Equivalence tables provide the mapping from source to destination members.
- Observation value mappings: are used to map measure dimensions. As explained in the data

definition package, the possible values associated with measure dimensions are sets of variables
instead of members. Therefore, equivalence tables are not applicable in this case, since they map
members.

Characteristics of mapping definitions are:

• Must be identifiable, nameable and maintainable.

• May contain one or more variable mapping items.

• Must refer to one cube mapping (combination of source and destination cubes).

5.1.2 Variable mapping item
 Each variable mapping item defines which variables are involved in a mapping (source and
destination). This element is used for all types of mapping definition.

• Must be versionable.

5.1.3 Equivalence table item
 An equivalence table item describes how to apply the necessary transformation between
members. It defines the source and destination variable/member pairs for the mapping.

• Must be identifiable.

5.1.4 Mapping set
 A mapping set is a collection of mapping definitions to be used in the context of observation
value mappings.

5.1.5 Associations

5.1.5.1. Cube mapping to cube
 The entity cube mapping represents the source cube/destination cube pair for the mapping. The
objective of mappings is to guide the transformation from an initial cube (source) into a new cube
(destination) through one of the four instruments available in the mapping package. These are the
“deletion”, “algorithm”, “equivalence”, or “observation value” mappings.

13

5.1.5.2. Variable mapping item to variable
 Each mapping describes the data movement “as-is” or data transformation between a
variable(s) (source) into one or more (destination). A mapping definition is composed of several variable
mapping items, each of which is related to one of the parts of the correspondence: source or target. In
other words, the variable mapping item lists the source and destination variables involved in a mapping.
One mapping can map a combination of “n” source variables to a combination of “m” destination
variables.

5.1.5.3. Equivalence table item to variable or member
 Mappings of the type “equivalence” will make use of an equivalence table. This table will define
the mappings of members. Thus, the equivalence table provides the list of member mappings, with the
possibility of mapping a combination of “n” source members to a combination of “m” members. Each
“equivalence table item” will define one part of a row mapping.

Figure 41: Equivalence table structure

 Whenever one mapping of members contains, either at the source or the destination, a
combination of members, then it is necessary to specify the variable to which the member refers. In
other cases, the variable is not necessary, and the equivalence table will not refer to them.

 For instance, a mapping between ISO 3166 alpha 2 and 3166 alpha 3 is one to one (for instance
AT = AUT), thus there is no need to specify the variables and the equivalence table is reusable. If there is
a member which refers to “original maturity over two years and remaining maturity over two years”, it
can be mapped to a combination of pairs, i.e. variable/member: “Original maturity”/”Over two years”
and “Remaining maturity”/”Over two years”.

6. Rendering package
 The rendering package allows stakeholders to represent data combinations in predefined
multidimensional table formats. It therefore provides the possibility of creating predefined formatted

14

templates to present data, and linking the template structure with the dataset/cube items (variables,
member hierarchies, and members) it belongs to.

The rendering package is based on the rendering used by XBRL and the DPM.

The new elements which belong to this package appear in black in the figure below. The elements in grey
are part of other packages (data definition and core package).

-identifiable[1] : Identifier
-nameable[1] : Naming
-maintainable[1] : Maintainer

Table
-identifiable[1] : Identifier
-nameable[1] : Naming
-orientation[1] : String
-order[1] : Number

Axis

-identifiable[1] : Identifier
-nameable[1] : Naming
-order[1] : Number
-level[1] : Number

Axis Ordinate

-identifiable[1] : Identifier
-nameable[1] : Naming
-maintainable[1] : Maintainer
-versionable[1] : Version
-cube_type[0..1] : String
-is_allowed[1] : Boolean

Cube

0..*

-contains data from1..*

1

-has

1..* 1

-contains

1..*

-identifiable[1] : Identifier
-is_row_key[1] : Boolean
-is_shaded[1] : Boolean

Table Cell

-identifiable[1] : Identifier
-nameable[1] : Naming
-maintainable[1] : Maintainer

Variable

-identifiable[1] : Identifier
-nameable[1] : Naming
-maintainable[1] : Maintainer

Member
-identifiable[1] : Identifier
-nameable[1] : Naming
-maintainable[1] : Maintainer

Combination

1

-is composed of

1..*

Cell Position

1..*

1..*

-identifiable[1] : Identifier
-nameable[1] : Naming
-maintainable[1] : Maintainer

Member Hierarchy

-level[1] : Number
-comparator[0..1] : String
-operator[0..1] : String
-versionable[1] : Version

Member Hierarchy Node

1

1..*

0..*

-is
 a

1

0..*

-h
as

 p
ar

en
t

0..1

0..*

-contains0..*

0..*

-c
on

ta
in

s

0..1

0..1

-c
an

 b
e

pa
rt

 o
f

0..1

0..1

-r
ep

re
se

nt
s

0..1

0..*

-s
ta

rt
s h

ie
ra

rc
hy

 a
t

0..1

-versionable[1] : Version

Combination Item

0..*

0..1
1

0..*

Core
Package

Data Definition
Package

Figure 5: Rendering package

6.1 Definition of rendering package elements

6.1.1 Table
 The table entity represents the content structure for the representation of data. For example, a
balance sheet table report with a format.

• Must be identifiable, nameable and maintainable.

• It is composed of one or many table cells (see 5.10.4).

• A table may contain data items from one or more cube definitions.

6.1.2 Axis
 The entity “axis” contains information about one dimension of a multidimensional table. Tables
contain at least two axes, one x (columns) and one y (rows). A balance sheet may have a list of items by
rows and two time periods (current and previous) by columns.

15

• An axis must be identifiable and nameable.

• A table can have two or more axes.

• Each axis will have an orientation (e.g. x, y, z), and an order.

6.1.3 Axis ordinate
 An axis ordinate entity represents an item of a dimension of a table. Each row and each column
of the balance sheet constitutes an axis ordinate.

 Each ordinate may have an associated dimensional description, i.e. a set of pairs, such as
variable/member or variable/subdomain from the core package.

• An axis ordinate should be identifiable and nameable.

• Each axis ordinate contains the attributes order (order of presentation of the element), and
level (the level in the hierarchy of ordinates).

6.1.4 Table cell
A table cell is the list of combinations of x and y ordinates (i.e. combinations of rows and columns).

• It should be identifiable.

It contains attributes, the “is_row_key” (which defines, in the case of tables, those cells with an “open
axis”, i.e. an axis for which the ordinates are not enumerated, which is the key enumerated ordinate) and
the “is_shaded” (those cells that should not have a value).

	1. Introduction
	1.1 SMCube use cases
	1.2 SMCube Information Model requirements
	1.3 Contents of this document

	2. Metaclasses
	3. Core package
	3.1 Definition of core package elements
	3.1.1 Domain
	3.1.2 Member
	3.1.3 Subdomain
	3.1.4 Variable
	3.1.5 Variable set
	3.1.6 Member hierarchy
	3.1.7 Member hierarchy node
	3.1.8 Facet collection and facet item

	4. Data definition
	4.1 Definition of the data definition elements
	4.1.1 Framework
	4.1.2 Cube
	4.1.3 Cube group
	4.1.4 Cube structure
	4.1.5 Cube structure item
	4.1.6 Combination and combination item

	5. Mapping package
	5.1 Definition of mapping package elements
	5.1.1 Mapping definition
	5.1.2 Variable mapping item
	5.1.3 Equivalence table item
	5.1.4 Mapping set
	5.1.5 Associations
	5.1.5.1. Cube mapping to cube
	5.1.5.2. Variable mapping item to variable
	5.1.5.3. Equivalence table item to variable or member

	6. Rendering package
	6.1 Definition of rendering package elements
	6.1.1 Table
	6.1.2 Axis
	6.1.3 Axis ordinate
	6.1.4 Table cell

