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Abstract

We use multivariate unobserved components models to estimate trend and cyclical com-

ponents in GDP, credit volumes and house prices for the U.S. and the five largest European

economies. With the exception of Germany, we find large and long cycles in credit and house

prices, which are highly correlated with a medium-term component in GDP cycles. Differ-

ences across countries in the length and size of cycles appear to be related to the properties

of national housing markets. The precision of pseudo real-time estimates of credit and house

price cycles is roughly comparable to that of GDP cycles.

Keywords: Unobserved components models, model-based filters, financial cycles, credit cycle,

house prices

JEL classification: C32, E32, E44
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Non-technical summary

This paper uses multivariate structural time (STS) models to estimate trend and cyclical compo-

nents of real GDP, real total credit volumes and real residential property prices for the U.S. and

the five largest economies in Europe. The data range from 1973 Q1 to 2014 Q4. We address two

specific questions that are of relevance to macro-prudential policies: first, how do financial cycles

relate to business cycles? And second, how reliable are real-time estimates of financial cycles?

Studies have so far mostly used univariate non-parametric methods, i.e. band-pass filters and

turning point analysis, to extract financial cycles. These methods require a priori assumptions on

cyclical characteristics and are applied separately to each series. They are therefore not particu-

larly suitable for assessing cyclical co-movements and evaluating the cyclical stance in real-time.

Multivariate STSMs do not suffer from these shortcomings. We propose various modifications of

the standard STSM to jointly model the cyclical dynamics in GDP and the financial series.

In line with earlier studies, we find pronounced cycles in credit and house prices with a length

of 12 to 18 years in most cases. There also arise important differences across countries. We find

cycles to be particularly long and large for the U.K. and Spain, of more moderate length and size

for the U.S., Italy, and France, and comparatively short and small for Germany. These differences

turn out to be related to a specific structural characteristic of national housing markets: cycles

are longer and larger for countries with high rates of private home ownership.

Moreover, financial cycles are closely related to a medium-term component in the GDP cycle.

More precisely, the multivariate estimates emphasize the presence of medium-term fluctuations in

GDP, which are longer than the traditional business cycle (3 to 8 years). We find high correlations

between the financial and GDP cycles in the medium term, but more moderate correlations over

the business cycle. While previous studies have documented that peaks and troughs in financial

cycles coincide with major turning points in GDP cycles, our results suggest a more systematic

relationship between financial cycles and GDP in the medium term.

The uncertainty of real-time estimates of financial and business cycles is of about the same order

of magnitude, when measured relative to the size of the cycles. In line with studies on the business

cycle, the multivariate STSM delivers more precise estimates than the band-pass filter.
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1 Introduction

The role of the financial sector in the creation and propagation of economic fluctuations is at

the heart of both macroeconomic research and of considerations about the re-design of economic

policy after the financial crisis. Given the key role of the leverage cycle in the emergence of

financial imbalances (Geanakoplos, 2009; Jordà et al., 2014), an important element in these

discussions is macro-prudential policies aimed at dampening cyclical fluctuations in credit volumes

and residential property prices (Cerutti et al., 2015). Clearly, the implementation of such policies

requires forming a view on the cyclical stance of these financial series.1

Against this background, recent studies have argued that post-war credit volumes and house prices

in advanced economies contain pronounced medium-term cyclical components. These studies rely

on univariate detrending methods, such as turning point analysis (Claessens et al., 2011, 2012),

univariate band-pass filters (Aikman et al., 2015), or both (Drehmann et al., 2012; Schüler et

al., 2015). Band-pass filters are usually applied with a frequency band of 32 to 120 quarters, but

some studies use spectral methods to search for optimal frequency bands. A few studies apply

univariate structural time series models (De Bonis and Silvestrini, 2013; Galati et al., 2015). One

study using a multivariate approach is limited to U.S. data (Chen et al., 2013).

In this paper we apply versions of multivariate structural time series models (STSMs), as intro-

duced by Harvey and Koopman (1997), to estimate trend and cyclical components in real GDP,

real credit volumes, and real residential property prices. We use quarterly data from 1973 Q1

to 2014 Q4 for the U.S. and the five largest economies in Europe. We are interested in two par-

ticular questions that are of relevance to macro-prudential policies: first, how do financial cycles

relate to business cycles? And second, how reliable are real-time estimates of financial cycles?

Understanding the relations between financial and business cycles is important for the coordina-

tion of macro-prudential and monetary policies, while the need for reliable real-time estimates is

apparent.

1See also Giese et al. (2014) for a discussion of the role of the credit-to-GDP gap in setting counter-cyclical
capital buffers and Alessi and Detken (2014) for its use as an early warning indicator of financial crises.
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Compared to non-parametric filters, the multivariate STSM appears well-suited to give additional

insights into the dynamic properties of financial cycles and their relationship to business cycles.

Non-parametric filters rely on pre-specified frequency bands, which implies a risk of missing parts

of cyclical dynamics or, conversely, of obtaining spurious cycles (Murray, 2003). For instance,

while Drehmann et al. (2012) regard financial and business cycles as “different phenomena”,

such finding emerges from their choice of frequency bands for the extraction of GDP (8 to 32

quarters) and financial cycles (32 to 120 quarters): once the filter bands do not overlap, estimates

of the two cycles are uncorrelated by construction. Schüler et al. (2015) address this deficiency

by deriving the frequency bands from cross spectral densities, but this ignores information in the

auto spectra. Similarly, turning point analysis embodies ad hoc assumptions on certain cyclical

characteristics. Studies based on this method conclude that GDP recessions are particularly deep

when accompanied by troughs in financial cycles (Claessens et al., 2012).

We extend the standard STSM in various ways to jointly model the cyclical dynamics of GDP

and the financial series and to account for the particularly high persistence in financial cycles.

We follow Rünstler (2004) in modelling phase shifts among cyclical components. Our study also

builds on Chen et al. (2013) and Galati et al. (2015). Galati et al. (2015) use univariate models

to extract financial cycles for major economies. Chen et al. (2013) apply a multivariate approach

to U.S. data and report high correlation between GDP and financial cycles.

Our main findings are as follows. First, we find long and large cycles in the financial series, but

also some important differences across countries. For the U.S., Italy and France, the estimated

average cycle length is 12 to 15 years. Standard deviations of credit cycles range from 4% to 6%,

those of house prices from 10% to 12%. Financial cycles are larger and longer for the U.K. and

Spain, while they are very small and short for Germany.

Second, these differences correspond closely to the shares of private home ownership in national

housing markets: financial cycles are larger and longer for countries with higher shares.

Third, financial cycles are closely related to a medium-term component in GDP cycles. Estimating

the GDP cycles in a multivariate model jointly with the financial cycles emphasises medium-
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term fluctuations in the former and results in average cycle lengths outside the aforementioned

frequency band of 8 to 32 quarters that is usually employed to extract business cycles with band-

pass filters. We find the coherences between the three cycles to be high at frequencies lower than

32 quarters, but more moderate for the traditional business cycle frequencies. Furthermore, house

price cycles are contemporaneous to GDP cycles, while credit cycles tend to lag the latter.

Fourth, we assess the properties of pseudo real-time estimates. Estimating medium-term cycles

from 42 years of data may be regarded as a somewhat courageous undertaking, in particular when

it comes to real-time estimates. We conduct a Monte Carlo study to learn about the precision

of estimates of financial cycles in comparison with business cycles. We complement this with

inspecting the subsequent revisions to the real-time estimates, that emerge once the information

set is enlarged with further observations. We find the uncertainty of real-time estimates of financial

cycles to be comparable to that of business cycles, when measured relative to the size of the cycles.

Estimates of long cycles are subject to higher uncertainty. However, financial cycles are also larger,

while trends remain comparatively smooth, which results in more favourable signal-to-noise ratios.

In line with studies on the business cycle (e.g. Rünstler, 2002; Basistha and Startz, 2008; Trimbur

2009), we find that the multivariate STSM provides more precise real-time estimates than the

univariate STSM and the band-pass filter.

The paper is organised as follows. Section 2 discusses the multivariate STSM used in our analysis.

Section 3 presents estimates of GDP and financial cycles for the six countries under investigation.

Section 4 discusses the precision of estimates. Section 5 concludes the paper.

2 Methodology

Section 2.1 reviews the multivariate structural time series model (STSM) introduced by Harvey

and Koopman (1997). Section 2.2 discusses two extensions of the standard model, which account

for the different dynamics of business and financial cycles and the high persistence of the latter.

Section 2.3 turns to estimation and testing.

ECB Working Paper 1915, June 2016 5



2.1 The Multivariate Structural Time Series Model

Consider a vector of n time series x′t = (x1,t, ..., xn,t)
′ with observations ranging from t = 1, . . . , T .

The multivariate STSM proposed by Harvey and Koopman (1997) is designed to decompose xt

into trend, µt, cyclical, xCt , and irregular components, εt,

xt = µt + xCt + εt . (1)

The n×1 vector εt of irregular components is normally and independently distributed with mean

zero and n × n covariance matrix Σε, εt ∼ NID(0,Σε). The n × 1 vector µt of stochastic trend

components is defined as

∆µt = βt−1 + ηt, ηt ∼ NID(0,Ση) , (2)

∆βt = ζt, ζt ∼ NID(0,Σζ) ,

where level η′t = (η1,t, ..., ηn,t)
′ and slope innovations ζ′t = (ζ1,t, ..., ζn,t)

′ are normally and inde-

pendently distributed with n× n covariance matrices Ση and Σζ , respectively.

Cyclical components xCt = (xC1,t, ..., x
C
n,t)
′ are modelled from stochastic cycles. The stochastic

cycle (SC) is defined as a bivariate stationary stochastic process for ψ̃i,t = (ψi,t, ψ
∗
i,t)
′,

(
I2 − ρi

[
cosλi sinλi
− sinλi cosλi

]
L

)[
ψi,t
ψ∗i,t

]
=

[
κi,t
κ∗i,t

]
, (3)

with decay 0 < ρi < 1 and frequency 0 < λi < π. I2 denotes the 2× 2 identity matrix, while L is

the lag operator. Cyclical innovations κ̃i,t = (κi,t, κ
∗
i,t)
′ are distributed as κ̃i,t ∼ NID(0, σ2κ,iiI2).

The autocovariance generating function (ACF) Ṽii(s) = E
[
ψ̃i,tψ̃

′
i,t−s

]
for s = 0, 1, 2, . . . , is given

by dampened cosine and sine waves of period 2π/λi,

Ṽii(s) = σ2κ,iih(s; ρi)T
+(sλi) , where (4)

T+(sλi) =

[
cos(sλi) sin(sλi)
− sin(sλi) cos(sλi)

]
,

with scalar function h(s; ρi) = (1− ρ2i )−1ρsi and orthonormal, skew-symmetric matrix T+(sλi).
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The spectral generating function (SGF) G̃ii(ω) of ψ̃i,t is discussed in Annex A. It is hump-shaped

with a peak close to λi, while the dispersion around the peak is determined by ρi. The stochastic

cycle is therefore well-suited for extracting a certain frequency band of the spectrum. If ρ converges

to 1, together with σ2κ,ii converging to 0, the SC becomes deterministic and the spectrum collapses

to a single point, G̃ii(ω) = 0 for ω 6= λ.2

For the multivariate case, assume that the n× 1 vector xCt of cyclical components is driven by n

independent stochastic cycles. Define the 2n× 1 vector ψ̃t = (ψ′t,ψ
∗′
t )′ with ψt = (ψ1,t, ..., ψn,t)

′

and ψ∗t = (ψ∗1,t, ..., ψ
∗
n,t)
′. Equivalently, define the 2n× 1 vector of innovations κ̃t with covariance

matrix E [κ̃tκ̃t
′] = I2n. We specify cyclical components xCt as linear combinations of ψt and ψ∗t ,

xCt = (A,A∗)ψ̃t , (5)

where A = (aij) and A∗ = (a∗ij) are general n× n matrices.

In empirical applications to the business cycle, this specification has so far been used under the

assumption of so-called similar cycles, which amounts to the restriction of identical decays and

frequencies ρi = ρ and λi = λ for i = 1, . . . , n. This allows for expressing the dynamics of ψ̃t as

(
I2n − ρ

[
T+(λ)⊗ In

]
L
)
ψ̃t−1 = κ̃t . (6)

As shown by Rünstler (2004), equation (5) introduces phase shifts between cyclical components.

Specifically, the elements V C
ij (s) of the ACF V C(s) of xCt can be expressed as

V C
ij (s) = h(s; ρ)rij cos(λ(s− θij)) , (7)

where rij =
√
a2ij + a∗2ij and θij = λ−1 arctan(a∗ij/aij) are derived from the elements of A and A∗.

As discussed in Annex A, this property arises from the skew-symmetry of T+(sλi). Equation (5)

implies that cyclical components are linear combinations of the elements of ψt and ψ∗t . Hence,

from equation (4), with a non-zero A∗, cross-correlations among the elements of xCt emerge as

mixtures of sine and cosine waves, which can be written as cosine waves subject to phase shifts.

2Harvey and Trimbur (2004) show that extensions of the above model involving higher order trends and higher
order stochastic cycles contain ’ideal’ band-pass filters as a special case.
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The skew-symmetry of T+
1 (sλi) implies that rij = rji and θij = −θji. It can also be shown that

coherence and phase spectra at λ converge towards γij = rij/
√
riirjj and θij , respectively, for

ρ→ 1. Hence, rij and θij have an interpretation as phase-adjusted covariances and phase shifts.

Identifiability requires certain restrictions to be imposed on (A,A∗). An identified representation

is given by lower triangular matrices, aij = 0 for i < j and a∗ij = 0 for i ≤ j (see Rünstler, 2004).3

2.2 Extensions

We consider two extensions of the model of section 2.1, which are motivated by the findings of

earlier studies and our own preliminary estimates.

First, given the emphasis of earlier studies on the different dynamics of business and financial

cycles, we abandon the similar cycles assumption ρi = ρ and λi = λ for i = 1, . . . , k. Hence, from

equation (5), cyclical components xCt may load, via matrices A and A∗, on three latent indepen-

dent stochastic cycles with potentially different dynamics. This allows for a flexible approach to

modelling coherence and phase shifts between the elements of xCt at both business and financial

cycle frequencies. However, while we abandon the assumption of overall similar cycles, we will

test for pairwise similar dynamics and impose it on our final estimates if it is not rejected.

Second, to account for the high persistence of financial cycles, we expand the dynamics of the SC

by adding a further (scalar) autoregressive root 0 < φi < 1, which gives rise to the specification

(1− φiL)

(
I2 − ρi

[
cosλi sinλi
− sinλi cosλi

]
L

)[
ψi,t
ψ∗i,t

]
=

[
κi,t
κ∗i,t

]
. (8)

We refer to this process as the stochastic cycle with extended dynamics (SCE). As the SCE

amounts to a scalar distributed lag of the SC in equation (3), it maintains many of its properties.

Specifically, as long as φi is not too close to one, auto spectra remain hump-shaped. However,

they are more dispersed around their peak and skewed towards somewhat higher mass at low

frequencies. Morever, the above symmetry properties of the ACF are maintained: autocorrelations

of ψi,t and ψ∗i,t are identical, while their cross-correlations are skew-symmetric (see Annex A).

3see also Valle e Azevedo et al. (2006), Koopman and Valle e Azevedo (2008), and Moës (2012) for applications.
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Our model consists of equations (1), (2), and (5). The elements ψ̃i,t =
(
ψi,t, ψ

∗
i,t

)
of the 2n × 1

vector ψ̃t = (ψ′t,ψ
∗′
t )′ follow stochastic processes as defined in equation (8) with covariance matrix

E [κ̃tκ̃t
′] = I2n. The model parameters are given by the elements of matrices Ση, Σζ , and (A,A∗),

together with φi, ρi, and λi, i = 1, . . . , n. Two SCEs ψ̃i,t and ψ̃j,t are said to share similar

dynamics if φi = φj , ρi = ρj , and λi = λj . The model is completed by the assumption that εt,

ηt, ζt and κ̃t are mutually uncorrelated.

Again, certain identifying restrictions on the elements of (A,A∗) in equation (5) are required.

With non-similar cycles, it is sufficient to impose a normalisation of phase shifts, which can be

achieved from a∗ii = 0 for i = 1, . . . , n. Additional restrictions are required in case a subset of

SCEs share pairwise similar dynamics. As discussed in Annex A, they can be implemented by

imposing lower triangularity on the corresponding sub-matrices of (A,A∗). If, for instance, SCEs

2 and 3 share similar dynamics, then identifiability is achieved from a13 = a∗13 = 0.

With non-similar cycles, the ACF V C(s) of cyclical components xCt emerges as a mixture of

cosine waves of different lengths, and convenient closed-form analytical expressions for cross-

correlations do no longer exist. To characterise cyclical co-movements we therefore calculate the

multivariate spectral generating function GC(ω) of xCt from our parameter estimates and report

various statistics obtained from the latter. The derivation of GC(ω) is discussed in Annex A.

Denote the elements of GC(ω) with GCij(ω). We obtain the average frequencies λGi of cyclical

components xCi,t and the average coherences and phase shifts among them from the integrals π∫
0

√
GCii (ω)GCjj(ω) dω

−1 π∫
0

ϕij(ω)
√
GCii (ω)GCjj(ω) dω, (9)

weighted with auto spectra GCii (ω). To calculate λGi we set ϕii(ω) = ω. For brevity, we will refer

to 2π/4λGi as the (annual) average cycle length of series i. For the calculation of average coherence

and phase shifts, functions ϕij(ω) represent either coherence or phase spectra, which are derived

from the respective elements of GC(ω).4

4This approach has been used, among others, by King and Watson (1996) in a VAR context.

ECB Working Paper 1915, June 2016 9



2.3 Estimation and Testing

We estimate the model via maximum likelihood by casting the equations in state-space form

xt = Zαt + εt,

αt+1 = Wαt + ξt

and by applying the prediction error decomposition of the Kalman filter. The associated smooth-

ing algorithms (see e.g. Durbin and Koopman, 2001) then provide minimum mean square linear

estimates αt|s = E [αt|Xs] of the state vector and their covariance Pt|s for arbitrary information

sets Xs = {xτ}sτ=1with s > t. Studies usually report the most efficient full-sample estimates αt|T .

In order to assess the properties of real-time estimates we will also inspect real-time estimates

αt|t and the subsequent evolution of smoothed estimates αt|t+h for fixed h > 0.

We obtain preliminary estimates of key parameters and carry out tests on cyclical dynamics from

the application of univariate STSMs to each series. LR tests on similar dynamics under the full

model are not feasible. We therefore conduct likelihood ratio (LR) tests on overall and pairwise

similar dynamics from joint estimation of the univariate STSMs under the respective restrictions.

We impose pairwise similar dynamics if the restrictions are not rejected.5

3 Stylised Financial Cycles Facts

We apply the multivariate STSM as described in section 2 to real GDP (Yt), real total credit

volumes (Ct), and an index of real residential property prices (Pt). We use quarterly data for the

U.S., the U.K., Germany, France, Italy, and Spain. The data range from 1973 Q1 to 2014 Q4.6

We take real GDP and GDP deflator series from the OECD main economic indicators database

and nominal total credit volumes and nominal residential property prices from BIS databases.

5As discussed in section 2.2, similar cycles require some additional identifying restrictions to be imposed on the
elements of A and A∗. The test statistic therefore has a non-standard test distribution under the null hypothesis.

6Our data start in 1970 Q1 for most countries, but house price data are of poor quality in the initial years of the
sample. We therefore start estimation in 1973 Q1. We choose total credit instead of total bank credit because the
latter series do not capture mortgages funded via securitisation (ECB, 2008). Quarterly data for mortgage credit,
in turn, start only in 1980 or even 1999.
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We deflate the latter two series with the GDP deflator.

We start with fitting the univariate STSM, as given by equations (1), (2), and (8). We conduct

LR tests on cyclical dynamics from joint estimation of the univariate models for the three series.

The joint null hypothesis of φi = 0 for i = {1, 2, 3} is rejected for all countries at extremely

high significance levels, while estimating the model under the null leaves high autocorrelation in

prediction errors. Subsequent LR tests of the similar cycles restriction either reject or are close

to rejecting the restriction of similar cycles between all three series at the 10% level. Conversely,

pairwise similar dynamics between credit volumes and house prices is accepted at convenient

significance levels.

We therefore estimate the multivariate STSM under the restriction that SCEs 2 and 3 share

similar cyclical dynamics, φ2 = φ3, ρ2 = ρ3, and λ2 = λ3. Moreover, we restrict the standard

deviation of slope innovations to credit volumes and house prices to a value of σζ = 0.001, close

to the upper range of unrestricted estimates of these parameters across countries. For Spain, we

impose values of ρ2 = 0.98 and σζ = 0.0025. With these restrictions, which assume slopes to be

somewhat more volatile than the unrestricted estimates, we aim at improving the comparability

of results across countries and at insuring against potentially spurious estimates of overly long

and large estimates of financial cycles. The results for unrestricted estimates are very similar.7

The left-hand panels of Table 1 and 2 show the parameter estimates of the univariate STSMs under

the similar cycles restriction on credit volumes and house prices, and with restricted standard

deviations of slope innovations. The estimates reveal pronounced cycles in the financial series

with average annual cycle lengths 2π/4λG, as calculated from the SGF, of in between 15.6 and

16.5 years for all countries but Germany (Table 2). For the latter, the estimated average annual

cycle length is 8.2 years and the standard deviations of cycles are comparatively small. Estimates

for GDP cycles differ more widely across countries. They are in a range of 5.1 to 5.9 years for

Germany and Italy, 7.7 to 9.5 years for the U.S., U.K., and France, and 12.3 years for Spain.

7Supplement A to this paper shows more detailed results for both restricted and unrestricted estimates together
with graphs of trend and cyclical components and prediction errors. We have also experimented with second order
stochastic cycles (Trimbur, 2006), while setting φi = 0. However, this did not reduce the high autocorrelations in
prediction errors that we found with model versions using a standard stochastic cycle (3), which motivated us to
search for extension (8).
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Table 1: Main Parameter Estimates from Univariate and Multivariate STSMs

Univariate STSM Multivariate STSM

Stochastic Cycles Trend Stochastic Cycles Trend
innovations innovations

φ ρ 2π/4λ ση σζ φ ρ 2π/4λ ση σζ

United States
ψ1,t 0.483 0.935 8.995 Yt 0.533 0.037 ψ1,t 0.000 0.860 4.770 Yt 0.000 0.031

ψ23,t 0.920 0.945 12.514 Ct 0.244 0.100 ψ23,t 0.859 0.956 10.795 Ct 0.000 0.100

Pt 0.001 0.100 Pt 0.000 0.100

United Kingdom
ψ1,t 0.286 0.953 12.729 Yt 0.000 0.049 ψ1,t 0.000 0.931 8.192 Yt 0.000 0.035

ψ23,t 0.720 0.982 18.119 Ct 1.627 0.100 ψ23,t 0.693 0.979 18.535 Ct 1.556 0.100

Pt 1.269 0.100 Pt 1.138 0.100

Germany
ψ1,t 0.000 0.944 5.822 Yt 0.730 0.021 ψ1,t 0.000 0.630 5.427 Yt 0.000 0.036

ψ23,t 0.147 0.941 11.642 Ct 0.517 0.100 ψ23,t 0.262 0.936 9.317 Ct 0.000 0.100

Pt 0.002 0.100 Pt 0.000 0.100

France
ψ1,t 0.850 0.822 5.895 Yt 0.292 0.031 ψ1,t 0.000 0.892 3.187 Yt 0.079 0.054

ψ23,t 0.850 0.951 16.672 Ct 0.502 0.100 ψ23,t 0.821 0.969 15.407 Ct 0.470 0.100

Pt 0.304 0.100 Pt 0.289 0.100

Italy
ψ1,t 0.886 0.848 3.124 Yt 0.449 0.050 ψ1,t 0.000 0.912 2.972 Yt 0.052 0.057

ψ23,t 0.726 0.967 19.255 Ct 0.906 0.100 ψ23,t 0.726 0.955 15.578 Ct 0.876 0.100

Pt 0.000 0.100 Pt 0.208 0.100

Spain
ψ1,t 0.150 0.980 14.767 Yt 0.000 0.050 ψ1,t 0.000 0.936 3.331 Yt 0.427 0.052

ψ23,t 0.697 0.980 16.998 Ct 0.000 0.250 ψ23,t 0.842 0.980 18.917 Ct 0.109 0.250

Pt 0.861 0.100 Pt 0.450 0.100

The left-hand panel shows the parameter estimates from the univariate STSM under the restriction of similar

cycles between credit volumes and house prices (ψ2,t and ψ3,t). For the univariate STSM the stochastic cycles

correspond to cyclical components in the series. The right-hand panel shows the estimates for the multivariate

STSM. Parameters ση, and σζ denote the standard deviations of trend and slope innovations, respectively,

multiplied by 100. The estimates impose restrictions on σζ for credit volumes and house prices. Estimates of

σε turn out to be very small, and we restrict them to zero.

In the multivariate STSM, the cyclical components xCit in the three series emerge as a mixture of

the three stochastic cycles ψ̃i,t, i = {1, 2, 3}, as in equation (5). Hence, the parameter estimates
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for the latent SCEs do not directly reflect the characteristics of cyclical components xCt and the

interpretation of parameters differs from the univariate case. The parameter estimates are shown

in the right-hand panel of Table 1. With the exception of Germany, SCEs ψ̃2,t and ψ̃3,t turn out

to be long and persistent. Estimates of 2π/4λ are in between 10.7 and 18.9 years, while ρ2 is

estimated at around 0.95, and φ2 attains values of 0.69 to 0.86. The first stochastic cycle, ψ̃1,t, is

considerably shorter and less persistent with estimates of 2π/4λ from 2.9 to 8.2 years. Parameter

φ1 turns out to be insignificant in all cases and we set it to zero.

The resulting properties of cyclical components xCit in the three series, as derived from the SGF

are depicted in the right-hand panel of Table 2. Figure 1 plots the full-sample estimates x̂Ct|T of

the cyclical components.

Our main findings are as follows. First, financial cycles are generally larger and longer than GDP

cycles, but there are substantial differences across countries. One may sort the countries into three

groups, according to the lengths and standard deviations of financial cycles. Germany stands out

with very short and small cyclical components in the financial series. The average cycle lengths

of GDP and financial cycles are very similar, ranging from 6.2 to 7.1 years (parameter 2π/4λG in

Table 2). Standard deviations of credit and house price cycles are estimated at 1.4% and 2.7%,

respectively, in the same range as the standard deviation of the GDP cycle (2.1%).8

The U.S., France, and Italy form the centre group with financial cycles of considerable size and

length. The average length of financial cycles ranges from 11.8 to 15.3 years; for GDP cycles,

the estimates range from 8.7 for the U.S. to 12.5 years for France. Standard deviations of credit

cycles range from 3.9% to 6.2%, those of house price cycles from 10.5% to 12.4%. This compares

to standard deviations of GDP cycles of 2.5% to 2.9%.

The third group consists of the U.K. and Spain, for which financial cycles are particularly long

and large. Estimates of the average cycle length range from 15.8 to 18.7 years. The standard

deviations of house price cycles are estimated at 18.6% to 21.2%, those of credit cycles at 7.6%

8For Germany, the BIS house price series differs substantially from the one published by the OECD. The latter
refers to house prices in urban areas only (Scatigna et al., 2014). The OECD series gives rise to a somewhat longer
and larger cycle, but it still remains very small compared to the other countries.
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and 14.0%, respectively. In addition, the GDP cycles are longer and larger: the average cycle

lengths are at 13.5 and 17.6 years, respectively, while standard deviations attain a value of 4.1%.

Table 2: Properties of Cyclical Components

Univariate STSM Multivariate STSM

2π/4λG σC 2π/4λG σC Phase

United States Y Ct CCt PCt

Yt 7.718 2.119 Yt 8.735 2.535 Y Ct 1.432 0.575

Ct 16.551 5.616 Ct 11.792 3.913 Coh CCt 0.805 -1.409

Pt 16.551 16.734 Pt 12.105 12.053 PCt 0.726 0.509

United Kingdom Y Ct CCt PCt

Yt 9.527 2.976 Yt 13.478 4.094 Y Ct 1.976 0.739

Ct 16.554 9.220 Ct 15.837 7.683 Coh CCt 0.532 -1.274

Pt 16.554 21.514 Pt 16.476 18.593 PCt 0.927 0.598

Germany Y Ct CCt PCt

Yt 5.135 1.360 Yt 6.336 2.147 Y Ct 1.076 1.132

Ct 8.172 1.215 Ct 6.193 1.431 Coh CCt 0.740 0.158

Pt 8.172 2.774 Pt 7.112 2.712 PCt 0.610 0.683

France Y Ct CCt PCt

Yt 8.584 1.692 Yt 12.572 2.678 Y Ct 2.669 -0.705

Ct 16.509 4.917 Ct 15.057 5.099 Coh CCt 0.875 -4.455

Pt 16.509 9.900 Pt 15.250 10.551 PCt 0.734 0.572

Italy Y Ct CCt PCt

Yt 5.931 1.917 Yt 9.240 2.918 Y Ct 1.492 5.407

Ct 16.539 7.517 Ct 13.354 6.220 Coh CCt 0.569 2.441

Pt 16.539 15.588 Pt 13.553 12.370 PCt 0.727 0.426

Spain Y Ct CCt PCt

Yt 12.266 3.021 Yt 17.582 4.118 Y Ct 2.959 -0.837

Ct 15.627 8.050 Ct 18.690 14.038 Coh CCt 0.808 -7.116

Pt 15.627 23.173 Pt 17.075 21.191 PCt 0.740 0.437

The left-hand panel shows estimates of the average annual length 2π/4λG and the standard deviation σC

(multiplied by 100) of cyclical components from the univariate STSM. The right-hand panel shows the

corresponding estimates from the multivariate STSM and matrices with average coherences in the lower

left and average phase shifts (in annual terms) in the upper right. A positive value of the phase shift means

that series row leads series column. All statistics are derived from the SGF described in section 2.2.
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Figure 1: Smoothed Cyclical Components
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Second, these cross-country differences correspond closely to shares of private home ownership in

the individual countries. In between 1995 and 2013, the average shares stood at 85% in Spain,

76% in Italy, 72% in the U.K., 67% in the U.S., 64% in France, and 52% in Germany. As shown in

Figure 2, a higher share of private home ownership corresponds to a higher average cycle length

and standard deviation of credit volume and house price cycles. Huber (2016) provides further

evidence on this relation based on turning point analysis for a sample of 18 OECD countries

showing that homeownership rates are more important for explaining cross-country differences

than financing conditions (see also Cerutti et al. (2015).9

Figure 2: Home Ownership Rate and Cyclical Characteristics
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Third, estimating the GDP cycle jointly with financial series in a multivariate context emphasises

a medium-term component in the cycles that is not fully present in estimates from the univariate

STSMs. Table 2 shows that estimates of average lengths of GDP cycles 2π/4λG from the multi-

variate STSM exceed those from the univariate STSM by 1.0 to 4.3 years. Moreover, the standard

deviations of cyclical components are by about 1 percentage point higher.

Fourth, we find financial cycles to be closely related to the GDP cycles. Estimates of coherences of

GDP with financial cycles range from 0.53 to 0.93, those between credit and house price cycles from

0.43 to 0.68 (see Table 2). Average phase shifts indicate a lag of credit cycles with respect to GDP

9We use data on private home ownership from the FRED database for the U.S. and from Eurostat for the
remaining countries. The Eurostat data starts in 1995.
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cycles of 1.0 to 3.0 years, while GDP and house price cycles evolve roughly contemporaneously.

Only for Italy the estimates would indicate a high lag of the house price cycle.

Fifth, these high coherences between GDP and financial cycles are mostly due to the contributions

from the medium-term frequencies. Table 3 shows average coherences separately for the frequency

bands of 32 to 120 and 8 to 32 quarters.10 With the exception of Germany, the contribution of

the lower band to the overall variance is above 0.8 for the financial cycles and still higher than

0.7 for GDP cycles. Furthermore, coherences are generally higher for the 32-to-120 quarter band

than for the 8-to-32 quarter band. The strong co-movement in the medium term is also evident

in Figure 1: the three cyclical components share their major peaks, while GDP and credit cycles

are subject to additional shorter fluctuations. Moreover, the major peaks are highly synchronised

across countries. The strong international co-movements in financial series have already been

documented by Breitung and Eickmeir (2014) and Rey (2015).

Table 3: Coherences at Different Frequency Bands

U.S. U.K. DE FR IT ES

Variance contribution 32− 120 quarters

Yt .745 .878 .551 .894 .767 .961

Ct .862 .935 .546 .939 .875 .974

Pt .871 .948 .575 .942 .879 .954

Coherences 32− 120 quarters

Yt, Ct .851 .540 .860 .931 .607 .840

Yt, Pt .774 .957 .664 .745 .848 .737

Ct, Pt .526 .604 .733 .622 .453 .473

Coherences 8− 32 quarters

Yt, Ct .699 .556 .685 .633 .423 .579

Yt, Pt .507 .578 .597 .616 .497 .833

Ct, Pt .478 .563 .655 .463 .373 .258

The table shows the contribution of the 32-120 band to their overall vari-

ance, as well as the coherences between the cyclical components at fre-

quency bands of 32-120 and 8-32 quarters. The statistics are calculated

from the weighted integral presented in equation (9) over the respective

bands.

10We obtain these statistics from calculating the integrals in equation (9) over the respective subranges. Auto
and cross spectra of cyclical components are plotted in Figures A.7 to A.12 in Supplement A.
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Our estimates are not consistent with the notion that GDP cycles are represented by a frequency

band of 8 to 32 quarters, as is commonly used in the application of band-pass filters. However,

estimates from other sources do contain such medium-term components. Multivariate unobserved

components models including real activity variables and inflation estimate the average length of

the euro area business cycle at about 10 years (Proietti et al., 2007; Jarocinski and Lenza, 2016).

Similarly, using an appropriate band-pass filter, Comin and Gertler (2006) have documented a

medium-term business cycle in the U.S.

In addition, Figure 3 and Table 4 show that annual output gap measures from the OECD and

the IMF are highly correlated with our own estimates. We also apply the Christiano-Fitzgerald

(CF) band-pass filter (Christiano and Fitzgerald, 2003) to the GDP series using frequency bands

of 8 to 32 and 32 to 120 quarters, respectively. We find the CF estimates based on the 32-to-120

quarter band to be much more closely related to our own estimates and the output gap measures

than those based on the 8-to-32 quarter band. Again, Germany is one exception to this rule.

Finally, the supplement to this paper shows that our estimates of financial cycles are similar to

the CF-filter estimates based on the 32-to-120 quarter frequency band.11

Table 4: Sample Correlations between GDP Cycles, 1980-2014

U.S. U.K. DE FR IT ES

IMF STSM .865 .909 .859 .567 .651 .890

CF 32-120 .696 .818 .588 .697 .617 .827

CF 8-32 .477 .311 .628 .415 .386 .280

OECD STSM .953 .888 . .775 .808 .897

CF 32-120 .881 .769 . .810 .618 .801

CF 8-32 .282 .491 . .553 .375 .343

STSM CF 32-120 .851 .920 .649 .824 .673 .950

CF 8-32 .495 .344 .677 .327 .430 .124

IMF OECD .954 .858 . .926 .650 .961

The table shows the annual sample correlations between cycles extracted by

the STSM, the CF filter, and the IMF and OECD output gap measures. The

latter two are available at annual frequencies from 1980 and 1985 onwards,

respectively. OECD gap measures for Germany are only available after 1991.

11See Figures A.1 to A.6 in Supplement A for a comparison of STSM and CF estimates of financial cycles and
Supplement B for sample cross-correlations among the latter.
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Figure 3: Estimates of GDP Cycles from Various Sources
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4 Properties of Pseudo Real-Time Estimates

Figure 1 shows full-sample estimates x̂Ct|T of the cyclical components. Economic policy, however,

necessarily relies on estimates x̂Ct|t from data sets Xt = {xτ}tτ=1 that are available in real-time. So

far, there is hardly any evidence on the reliability of real-time estimates of financial cycles, but

various studies have investigated the issue for the output gap. Orphanides and van Norden (2001)

report large differences in real-time estimates from different methods and conclude that output

gap estimates are of limited value for policy purposes. Edge and Meisenzahl (2011) replicate

the approach of Orphanides and van Norden (2001) for the U.S. credit-to-GDP ratio and reach

equivalent conclusions. However, most of the methods included in these two studies, such as

univariate filters and deterministic trends, arguably are of poor quality. Other studies on the

output gap have shown that multivariate unobserved components models considerably improve

upon univariate detrending methods, as they exploit the information contained in cyclical co-

movement (Rünstler, 2002; Watson, 2007; Basistha and Startz, 2008; Trimbur, 2009).

In this section we provide some evidence on the properties of pseudo real-time estimates from the

multivariate STSM. The purpose of our analysis is to assess the precision of estimates of financial

cycles in comparison with the traditional business cycle by using the latter as a benchmark. We

start with a Monte Carlo simulation and will then inspect the estimates from our empirical models.

4.1 Monte Carlo Simulation

The Monte Carlo simulation examines the precision of estimates of cyclical components under

different assumptions on their size, length, and persistence. We use a bivariate model to study

the gains from taking into account the information on cyclical co-movements.

We proceed as follows:

- We generate time series from a bivariate similar cycles model, xt = µt + xCt , as given by

equations (2), (5), and (8).

We use three different simulation designs. The first two designs represent stylised versions

of business (BC ) and financial cycles (FC ) dynamics, respectively. For simulation BC,
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we assume a cycle length of 7 years and a standard deviation of cyclical components of

σC = 0.025. The respective values for simulation FC are 15 years and σC = 0.100, close to

our estimates for house prices in the U.S., France and Italy. Further, the standard deviations

of trend innovations reflect our estimates on GDP and house prices from section 3.

Table 5: Monte Carlo Simulation Design

ρ 2π/4λ φ σC ση σζ

Business cycles BC .95 7.00 .000 2.500 .050 .050

Financial cycles FC .95 15.00 .800 10.000 .100 .100

Hybrid design HC .95 15.00 .800 2.500 .050 .050

The table shows the parameters of the three simulation designs.

The third, hybrid, design HC maintains the cycle length and persistence of simulation FC,

but assumes standard deviations of cycles and trend innovations as in simulation BC. The

purpose of the hybrid design is to disentangle the effects of the higher length and persistence

of financial cycles (in comparison with BC) and their larger size (in comparison with FC).

The parameters of the simulation designs are shown in Table 5. In all three designs, we use

the same parameters for both series. We abstract from phase shifts by setting A∗ = 02×2

and choose matrix A to achieve the above values of σC together with a coherence of 0.7

between the two cyclical components.

- For each design, we generate 500 replications of data {xs}Ts=1 with T = 360 observations

from the bivariate STSM. To account for parameter uncertainty, we split each draw into two

sub-samples: the first 180 observations are used to estimate model parameters by maximum

likelihood; we then obtain estimates of cyclical components from the remaining observations.

Given that the dynamics of the two series in the bivariate model are identical, it is sufficient

to inspect the estimates for the first series. To obtain the corresponding estimates from the

univariate STSM and the CF filter, we simply apply these methods to the first series. For

the CF filter we use frequency bands of 8 − 32 quarters for simulation BC and 32 − 120

quarters for simulations FC and HC.
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We inspect estimates of the cyclical component in series 1, x̂C1,t|t+h, based on information

sets Xt+h = {xs}t+hs=181 for different values of h. For instance, estimates x̂C1,t|t represent real-

time estimates, while smoothed estimates x̂C1,t|t+20 would use information up to 20 quarters

ahead. The latter estimates are very close to the full-sample estimates x̂C1,t|T , while providing

a more consistent benchmark for the real-time estimates.

The simulation outcomes are shown in Table 6. We assess the precision of estimates x̂C1,t|t+h from

the root mean square error (RMSE) with respect to the generated cycles xC1,t. Table 6 shows this

statistic together with the standard deviations of estimates x̂C1,t|t+h. Both are shown relative to

the standard deviation of the generated cycles, σC .

Table 6: Monte Carlo Simulation Results

Standard deviations RMSE
h = 0 h = 4 h = 20 h = 0 h = 4 h = 20

Business cycles (BC )

STSM bivariate .791 .871 .916 .700 .582 .450

STSM univariate .748 .821 .852 .769 .652 .530

CF filter (8 - 32) .542 .680 .800 .819 .673 .612

Financial cycles (FC )

STSM bivariate .711 .786 .877 .775 .701 .518

STSM univariate .717 .794 .893 .819 .740 .556

CF filter (32 - 120) .538 .566 .901 .802 .780 .584

Hybrid design (HC )

STSM bivariate .665 .730 .811 .939 .872 .720

STSM univariate .651 .716 .781 .998 .935 .798

CF filter (32 - 120) .714 .732 1.059 .936 .912 .818

The table shows the sample standard deviations of x̂C1,t|t+h and the RMSE of

x̂C1,t|t+h with respect to the generated values, xC1,t for different values of h. All

values are shown relative to the standard deviation of the generated cycles, σC .

For the bivariate STSM, we find the relative RMSE of real-time estimates x̂C1,t|t to be moderately

higher for simulation FC than for BC. This emerges as a net result of two opposing effects related

to cycle lengths and signal-noise ratios. First, the higher length and persistence of cycles in

simulation HC compared to BC results in a substantially larger relative RMSE. Second, simulation

ECB Working Paper 1915, June 2016 22



design FC implies a more favourable signal-to-noise ratio than HC, i.e. larger cyclical components

relative to the volatility of trends. This acts to reduce the RMSE. Taken together, the relative

RMSE of real-time estimates amounts to 0.78 for simulation FC, compared to 0.70 for BC. Once h

increases, the relative RMSEs of estimates decline. For h = 20 they become 0.45 for BC and 0.52

for FC. Correspondingly, standard deviations of cyclical estimates get closer to the true standard

deviation σC as h increases.

For simulations BC and FC the bivariate STSM provides consistently better real-time estimates

than the univariate STSM and the CF filter. The relative RMSE is always smaller, although the

gains are somewhat smaller for simulation FC. In addition, the CF filter grossly underestimates

the standard deviations of the cycles in real-time. For simulation HC the CF filter performs

equally well, as the parameter estimates in the STSM are subject to larger standard errors.

4.2 Empirical Pseudo-Real Time Estimates

We turn to the inspection of pseudo real-time estimates of cycles x̂Ct|t for the countries in our

sample. Following earlier studies (e.g. Orphanides and van Norden, 2002), we examine the

revisions of real-time to smoothed estimates x̂Ct|t − x̂Ct|t+20. As the smoothed estimates are more

precise than the real-time estimates, the size of the revisions gives an indication of the relative

performance of the models. Figure 4 plots both estimates for the various cyclical components.

Table 7 reports the sample standard deviations of the real-time estimates and the RMSE of

revisions relative to the sample standard deviation of the smoothed estimates x̂Ct|t+20. In contrast

to the results reported in section 4.1, the graphs and statistics are based on full-sample estimates

of model parameters and therefore do not take into account parameter instability.12

Overall, our findings for the multivariate STSM are similar to the above simulation results. In

most cases, the sample standard deviations of real-time estimates x̂Ci,t|t are again close to 70% of

those of the smoothed estimates x̂Ci,t|t+20. Excluding Germany, the relative RMSE of revisions

ranges from 0.38 to 0.62 for house price, 0.45 to 0.68 for credit and 0.54 to 0.67 for GDP cycles.

12Our sample of 42 years contains only three full financial cycles and is therefore arguably too short for the
recursive estimation of model parameters.
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Figure 4: Real-Time Estimates of Cyclical Components
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Hence, conditional on the parameter estimates, real-time estimates of house price cycles appear

somewhat more reliable than those of GDP and credit cycles. Our simulation results suggest that

this can be attributed to the larger standard deviation of house price cycles. For Germany, the

size of revisions is relatively large given the small size of the cyclical components.

Table 7: Properties of Real-Time Estimates

GDP Credit House prices
Std RMSE Std RMSE Std RMSE

Multivariate STSM

U.S. .735 .558 .620 .683 .887 .502

U.K. .593 .542 .744 .448 .718 .507

Germany .855 .445 .894 .823 .913 .770

France .736 .526 .846 .484 .807 .467

Italy .750 .561 .573 .690 .742 .386

Spain .548 .673 .775 .629 .574 .624

Christiano-Fitzgerald filter

U.S. .747 .657 .418 .693 .447 .637

U.K. .843 .825 .629 .682 .475 .617

Germany .595 .621 .700 .829 .831 .640

France .758 .800 .539 .627 .568 .571

Italy .714 .655 .523 .658 .533 .560

Spain .986 1.018 .591 .730 .424 .624

Columns Std and RMSE show the sample standard deviations of x̂Ct|t
and the RMSE of revisions of x̂Ct|t with respect to x̂Ct|t+20. All values

are shown relative to the sample standard deviations of x̂Ct|t+20.

Further, Table 7 confirms the better performance of the multivariate STSM compared to the CF

filter. Again, we use frequency bands of 8 − 32 quarters for GDP and 32 − 120 quarters for the

financial series. For all three series, the relative RMSE of revisions is almost always smaller for

the multivariate STSM. In addition, for the financial cycles the downward bias in the standard

deviations of real-times estimates is almost always smaller. While the latter finding does not hold

for GDP cycles, the results are not directly comparable, as the CF filter bands imply shorter

cycles than the STSM estimates.
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5 Conclusions

The purpose of this paper was to estimate financial cycles for the U.S. and the five largest European

economies and to study their relationships with business cycles. We developed a version of the

multivariate STSM that allowed us to jointly model business and financial cycle dynamics and

to account for the high persistence in the latter. In line with other studies, we found large and

persistent cycles in real credit volumes and real house prices with a length of about 15 years.

Germany emerged as one major exception with comparatively small and short-lived fluctuations

in the financial series.

The multivariate estimates also emphasize a medium-term component in the GDP cycle that is

closely associated with the financial cycles. Such medium-term component is not fully revealed in

estimates from univariate models. While earlier studies have already noted that peaks and troughs

in financial cycles coincide with major turning points in GDP cycles (Drehmann et al, 2012;

Claessens et al., 2012), our estimates indicate a more systematic relationship between financial

cycles and GDP at medium-term frequencies in line with the evidence provided by Leamer (2007)

and Jordà et al. (2014). This suggests possible gains from the coordination of monetary and

macro-prudential policies.

Another finding of the paper is that financial cycles are larger and longer for countries with high

rates of private home ownership. While our sample consists only of six countries, the result has

been confirmed by Huber (2016) for a set of 18 OECD countries using turning point analysis. The

impact of structural characteristics of housing and mortage markets on financial cycles may war-

rant further research, as this might provide important insights into the driving forces of financial

cycles and the role for country-specific macro-prudential policies in the euro area.

Finally, issues pertaining to the reliability of real-time estimates of financial cycles may be of

no larger scale than those for business cycles: we found that the uncertainty of our estimates of

financial and business cycles, relative to their size, is roughly comparable. Furthermore, in line

with earlier studies on the business cycle, our results confirm that multivariate model-based filters

provide more precise real-time estimates than univariate model-based and non-parametric filters.
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Annex A: Properties of Stochastic Cycles

Autocovariance Generating Function under Similar Cycles

The annex adapts the proofs of Rünstler (2004) to the case of the extended stochastic cycle (SCE). We consider

the 2n × 1 vector ψ̃t = (ψ′t,ψ
∗′
t )′. The elements ψ̃i,t =

(
ψi,t, ψ

∗
i,t

)
of ψ̃t follow stochastic processes as defined in

equation (8) with covariance matrix E [κ̃tκ̃t
′] = I2n.

Under the similar cycles restriction, the ACF of ψ̃t is given by

Ṽ (s) = f(s; ρ, φ)
[
T+
1 (sλ) ⊗ In

]
with scalar function f(s; ρ, φ) = [1 − φs]

[
1 − φs−1

]
h(s; ρ) with h(s; ρ) defined as in equation (4) in the main text.

Note that T+(sλ) = T cos(sλ) + T ∗ sin(sλ), where

T =

[
1 0
0 1

]
, T ∗ =

[
0 1

−1 0

]
.

Denoting Ã = (A,A∗), the ACF of cyclical components xCt is then given by

V C(s) = f(s; ρ, φ) [B cos(sλ) +B∗ sin(sλ)]

with symmetric B = Ã(T ⊗ In)Ã′ and skew-symmetric B∗ = Ã(T ∗ ⊗ In)Ã′. From a polar transformation, the
elements of B and B∗ can be expressed as bij = rij cos(λθij) and b∗ij = rij sin(λθij), respectively, with rij and θij
defined as in the main text. Using the trigonometric identity cos(λθij) cos(λs) + sin(λθij) sin(λs) = cos(λ(s− θij))
the elements of the ACF V C(s) of xCt can finally be expressed as

V Cij (s) = f(s; ρ, φ)rij cos(λ(s− θij)) .

The properties bij = bji and b∗ij = −b∗ji together with tan−1(−x) = − tan−1(x) imply θji = −θij and rij = rji.

The proofs of the identifying restrictions to be imposed on matrices (A,A∗) in the case of similar cycles carry over

directly to the SCE, as replacing scalar function h(s; ρ) with f(s; ρ, φ) does not change the argument. We use the

Cholesky decomposition proposed by Rünstler (2004). The case of non-similar cycles evidently does not require

lower triangularity of A and A∗ to achieve identifiability. However, the restrictions a∗ii = 0 for i = 1, . . . , n are

required, as phase shifts are identified only in relative terms. In case that subsets of m SCEs share similar dynamics,

Cholesky decompositions are applied to the respective n×m submatrices of A and A∗.

Spectral Generating Function

Denote the spectral generating function (SGF) of the SCE ψ̃i,t with

G̃ii(ω) = σ2
κ,ii

[
g1(ω) g12(ω)
gH12(ω) g2(ω)

]
,

where gH(.) denotes the complex conjugate of g(.). The properties of Ṽii(s) imply that g1(ω) = g2(ω) and that the
real part of the cross spectrum is zero. The SGF of the extended SC as in equation (8) is given by

g1(ω) =
1 + ρ2 − 2ρ cosλ cosω

D
gA(ω) ,

g12(ω) = −i
2ρ sinλ sinω

D
gA(ω) ,

gA(ω) =
(
1 + φ2 − 2φ cosω

)−1
,

where D =
[
1 + ρ4 + 2ρ2 − 4ρ(1 + ρ2) cosλ cosω + 2ρ2(cos 2λ+ cos 2ω)

]
and gA(ω) is the SGF of an AR(1).
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In the case of similar cycles, the SGF GC(ω) = Ã
[
G̃ii(ω) ⊗ In

]
Ã′ of cyclical components xCt can be expressed as

GC(ω) = Bg1(ω) +B∗g12(ω) .

In the case of non-similar cycles, closed-form expressions for GC(ω) do no longer exist. It is most conveniently cal-
culated from the general expressions for stationary stochastic processes. The SGF G(ω) of a multivariate stationary
stochastic process vt = Ψ(L)et with Eete′t = Σe is given by

G(ω) = [Ψ(exp(−iω))] Σe [Ψ(exp(−iω))]′

for −π ≤ ω ≤ π (see e.g. Hamilton 1994:267f). We use this expression to obtain the joint SGFG(ω) of vector ψ̃t from

the stationary part of the transition equation of the state space form and calculate the SGF of cyclical components

xCt from GC(ω) = (A,A∗)G(ω)(A,A∗)′. Coherence and phase spectra are found from the general expressions

(Hamilton, 1994:275f). We finally obtain average cycle lengths, coherences and phase shifts, as reported in Tables

2 and 3, from equation (9).
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Supplement A: Tables and Figures of the Three Main Models

A1. Tables Description

Tables A.1 to A.6 show the estimation results for the univariate and the restricted and unrestricted multivariate

models. More precisely, estimates for the univariate model and the multivariate model in column 2 are obtained

under the restriction that the standard deviations of the slope innovations of Ct and Pt equal 0.001. For credit

volumes in Spain we use a value of 0.0025. Column 3 shows the results for unrestricted slope estimates. All three

models impose similar cycle restrictions on Ct and Pt. 2π/4λ denotes the estimated cycle length of the stochastic

cycles ψi,t in years. The third panel shows stylised facts on cyclical co-movements derived from the SGF (see

section 2.2 and annex A). The upper part of the panel shows estimated average cycle lengths in years (2π/4λG) and

standard deviations σC , while the lower part shows coherences (lower left) and phase shifts in years (upper right)

between the cyclical components. LL and R2
D refer to the log-likelihood and the coefficient of determination with

respect to the first difference of the series, respectively. The Ljung-Box statistic Q(20) tests for autocorrelation in

standardized prediction errors based on 20 lags, and follows a χ2(20) distribution. LR statistic a) tests for extended

cyclical dynamics (see equation (8)). Statistics b) and c) test for similar cyclical dynamics in all three series and

between Ct and Pt, respectively (see section 3.1 for details). * and ** denote statistical signifiance at the 5% and

1% level, respectively.

A2. Figures Description

Figures A.1-A.6 show the smoothed estimates from the multivariate STSM with restricted slopes, as presented in the

main text. The first and second row show the data and trend, and the data and level of the trend in first differences,

respectively. The second row also shows the slope. The third row shows the corresponding smoothed cycle, while the

fourth row shows the standardized prediction errors. The final row shows the output of the Christiano-Fitzgerald

filter for a frequency band of 8-32 quarters for GDP and 32-120 quarters for credit and house prices.

Figures A.7-A.12 show the spectral generating functions of the cyclical components of the three series. The diagonal

figures show auto spectra. The lower-left off-diagonal figures show coherences between the cyclical components, as

derived from the SGF, while the upper-right off-diagonal figures show phase spectra. A positive value of the phase

stands for a lead of series row to series column.
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Table A.1: Main Parameter Estimates United States

Univariate Multivariate Multivariate
Restricted slopes Estimated slopes

1. Trend parameters

Yt Ct Pt Yt Ct Pt Yt Ct Pt

ση × 100 0.533 0.244 0.001 0.000 0.000 0.000 0.000 0.000 0.000
σζ × 100 0.037 0.100 0.100 0.031 0.100 0.100 0.030 0.042 0.014

2. Parameters stochastic cycles

ψ1,t ψ2,t ψ1,t ψ2,t ψ1,t ψ2,t

φ 0.483 0.920 0.000 0.859 0.000 0.865
ρ 0.935 0.945 0.860 0.956 0.896 0.967
2π/4λ 8.995 12.514 4.770 10.795 5.466 13.909

3. Cyclical components

Yt Ct Pt Yt Ct Pt Yt Ct Pt

2π/4λG 7.718 16.551 16.551 8.735 11.792 12.105 9.469 14.593 14.888
σC × 100 2.119 5.616 16.734 2.535 3.913 12.053 2.615 5.570 15.965

Phase Phase

Y Ct CCt PCt Y Ct CCt PCt
Y Ct 1.432 0.575 1.872 1.172

Coherence CCt 0.805 -1.409 0.743 -1.536
PCt 0.726 0.509 0.744 0.529

4. Diagnostics

Yt Ct Pt Yt Ct Pt Yt Ct Pt

LL 2265.140 2291.795 2292.136
R2
D 0.105 0.784 0.767 0.215 0.809 0.760 0.209 0.812 0.761

Q(20) 27.810 21.325 28.456 28.036 26.851 28.988 30.289 25.719 28.278

5. Likelihood ratio tests

a) φ1 = φ2 = φ3 = 0 **135.360
b) Similar Cycles (Y,C, P ) 10.300
c) Similar Cycles (C,P ) 4.594

For notation see section A1. We used one dummy to account for a level shift in credit in 1980 Q1.
For house prices, we used two dummies to account for an additive outlier in 1976 Q3 and a level
shift in 1976 Q4, respectively.
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Table A.2: Main Parameter Estimates United Kingdom

Univariate Multivariate Multivariate
Restricted slopes Estimated slopes

1. Trend parameters

Yt Ct Pt Yt Ct Pt Yt Ct Pt

ση × 100 0.000 1.627 1.269 0.000 1.556 1.183 0.020 1.567 1.217
σζ × 100 0.049 0.100 0.100 0.035 0.100 0.100 0.019 0.114 0.037

2. Parameters stochastic cycles

ψ1,t ψ2,t ψ1,t ψ2,t ψ1,t ψ2,t

φ 0.286 0.720 0.000 0.693 0.000 0.727
ρ 0.953 0.982 0.931 0.979 0.932 0.980
2π/4λ 12.729 18.119 8.192 18.535 8.141 18.856

3. Cyclical components

Yt Ct Pt Yt Ct Pt Yt Ct Pt

2π/4λG 9.527 16.754 16.754 13.487 15.837 16.476 14.385 16.459 17.168
σC × 100 2.976 9.220 21.514 4.094 7.6832 18.593 4.578 7.988 21.110

Phase Phase

Y Ct CCt PCt Y Ct CCt PCt
Y Ct 1.976 0.739 1.864 0.797

Coherence CCt 0.532 -1.274 0.573 -1.137
PCt 0.927 0.598 0.941 0.638

4. Diagnostics

Yt Ct Pt Yt Ct Pt Yt Ct Pt

LL 1873.874 1898.631 1899.585
R2
D 0.183 0.224 0.397 0.236 0.249 0.404 0.242 0.252 0.405

Q(20) 18.512 17.807 19.834 22.221 17.003 20.650 22.969 16.501 21.295

5. Likelihood ratio tests

a) φ1 = φ2 = φ3 = 0 **31.970
b) Similar Cycles (Y,C, P ) 9.187
c) Similar Cycles (C,P ) 0.371

For notation see section A1.
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Table A.3: Main Parameter Estimates Germany

Univariate Multivariate Multivariate
Restricted slopes Estimated slopes

1. Trend parameters

Yt Ct Pt Yt Ct Pt Yt Ct Pt

ση × 100 0.730 0.517 0.002 0.000 0.000 0.000 0.000 0.000 0.000
σζ × 100 0.021 0.100 0.100 0.036 0.100 0.100 0.030 0.100 0.065

2. Parameters stochastic cycles

ψ1,t ψ2,t ψ1,t ψ2,t ψ1,t ψ2,t

φ 0.000 0.147 0.000 0.262 0.000 0.336
ρ 0.944 0.941 0.630 0.936 0.596 0.931
2π/4λ 5.822 11.642 5.427 9.317 4.221 9.810

3. Cyclical components

Yt Ct Pt Yt Ct Pt Yt Ct Pt

2π/4λG 5.135 8.172 8.172 6.336 6.193 7.112 6.554 6.414 7.424
σC × 100 1.360 1.215 2.774 2.147 1.431 2.712 2.225 1.477 2.966

Phase Phase

Y Ct CCt PCt Y Ct CCt PCt
Y Ct 1.076 1.132 1.396 1.418

Coherence CCt 0.740 0.158 0.737 0.076
PCt 0.610 0.683 0.615 0.708

4. Diagnostics

Yt Ct Pt Yt Ct Pt Yt Ct Pt

LL 2129.141 2148.373 2148.453
R2
D 0.032 0.339 0.061 0.130 0.345 0.097 0.133 0.348 0.094

Q(20) *31.960 21.252 *35.886 *35.715 21.721 30.509 *35.250 21.517 29.917

5. Likelihood ratio tests

a) φ1 = φ2 = φ3 = 0 1.764
b) Similar Cycles (Y,C, P ) 3.098
c) Similar Cycles (C,P ) 0.67

For notation see section A1. We used one dummy for credit to account for a level shift in
1994 Q4.
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Table A.4: Main Parameter Estimates France

Univariate Multivariate Multivariate
Restricted slopes Estimated slopes

1. Trend parameters

Yt Ct Pt Yt Ct Pt Yt Ct Pt

ση × 100 0.292 0.502 0.304 0.079 0.470 0.289 0.202 0.499 0.313
σζ × 100 0.031 0.100 0.100 0.054 0.100 0.100 0.022 0.000 0.060

2. Parameters stochastic cycles

ψ1,t ψ2,t ψ1,t ψ2,t ψ1,t ψ2,t

φ 0.850 0.850 0.000 0.821 0.000 0.939
ρ 0.822 0.951 0.892 0.969 0.917 0.927
2π/4λ 5.895 16.672 3.187 15.407 3.000 10.993

3. Cyclical components

Yt Ct Pt Yt Ct Pt Yt Ct Pt

2π/4λG 8.584 16.509 16.509 12.572 15.057 15.250 13.912 17.312 17.553
σC × 100 1.692 4.917 9.900 2.678 5.099 10.551 2.559 4.794 10.930

Phase Phase

Y Ct CCt PCt Y Ct CCt PCt
Y Ct 2.669 -0.705 2.230 -0.272

Coherence CCt 0.875 -4.455 0.759 -3.989
PCt 0.734 0.572 0.690 0.355

4. Diagnostics

Yt Ct Pt Yt Ct Pt Yt Ct Pt

LL 2258.341 2291.226 2294.333
R2
D 0.367 0.368 0.785 0.405 0.466 0.788 0.431 0.469 0.787

Q(20) 21.567 24.959 23.092 22.752 29.749 22.532 23.965 28.302 23.680

5. Likelihood ratio tests

a) φ1 = φ2 = φ3 = 0 **97.908
b) Similar Cycles (Y,C, P ) 10.292
c) Similar Cycles (C,P ) 1.809

For notation see section A1. We used one dummy to account for a level shift in GDP in 1975
Q3, and three dummies for credit to account for level shifts in 1975 Q3, 1978 Q2 and 1986 Q4.
We used one dummy to account for an additive outlier in house prices in 1997 Q1.
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Table A.5: Main Parameter Estimates Italy

Univariate Multivariate Multivariate
Restricted slopes Estimated slopes

1. Trend parameters

Yt Ct Pt Yt Ct Pt Yt Ct Pt

ση × 100 0.449 0.906 0.000 0.052 0.876 0.208 0.039 0.926 0.206
σζ × 100 0.050 0.100 0.100 0.057 0.100 0.100 0.053 0.222 0.077

2. Parameters stochastic cycles

ψ1,t ψ2,t ψ1,t ψ2,t ψ1,t ψ2,t

φ 0.886 0.726 0.000 0.726 0.000 0.763
ρ 0.848 0.967 0.912 0.955 0.907 0.918
2π/4λ 3.124 19.255 2.972 15.578 2.926 9.845

3. Cyclical components

Yt Ct Pt Yt Ct Pt Yt Ct Pt

2π/4λG 5.931 16.359 16.359 9.240 13.354 13.553 6.712 9.588 9.821
σC × 100 1.917 7.517 15.588 2.918 6.220 12.37 2.302 3.485 9.330

Phase Phase

Y Ct CCt PCt Y Ct CCt PCt
Y Ct 1.492 5.407 1.377 4.169

Coherence CCt 0.569 2.441 0.585 1.116
PCt 0.727 0.426 0.628 0.405

4. Diagnostics

Yt Ct Pt Yt Ct Pt Yt Ct Pt

LL 2035.197 2055.486 2057.606
R2
D 0.297 0.405 0.602 0.324 0.412 0.641 0.338 0.414 0.648

Q(20) 19.042 17.914 *31.578 19.075 17.910 *37.267 19.401 17.952 *35.195

5. Likelihood ratio tests

a) φ1 = φ2 = φ3 = 0 **91.989
b) Similar Cycles (Y,C, P ) *15.350
c) Similar Cycles (C,P ) 1.163

For notation see section A1. For credit we used one dummy to account for an additive outlier in
1976 Q2, and two dummies to account for level shifts in 1977 Q4 and 1980 Q1. For house prices we
used three dummies to account for additive outliers in 1976 Q2, 1980 Q1 and 1991 Q4.
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Table A.6: Main Parameter Estimates Spain

Univariate Multivariate Multivariate
Restricted slopes Estimated slopes

1. Trend parameters

Yt Ct Pt Yt Ct Pt Yt Ct Pt

ση × 100 0.000 0.000 0.861 0.427 0.109 0.450 0.426 0.108 0.459
σζ × 100 0.050 0.250 0.100 0.052 0.250 0.100 0.043 0.250 0.025

2. Parameters stochastic cycles

ψ1,t ψ2,t ψ1,t ψ2,t ψ1,t ψ2,t

φ 0.150 0.697 0.000 0.842 0.000 0.857
ρ 0.980 0.980 0.936 0.980 0.937 0.980
2π/4λ 14.767 16.998 3.331 18.917 3.343 20.328

3. Cyclical components

Yt Ct Pt Yt Ct Pt Yt Ct Pt

2π/4λG 12.266 15.627 15.627 17.582 18.690 17.075 19.043 20.148 18.579
σC × 100 3.021 8.050 23.173 4.118 14.038 21.191 4.580 15.428 23.581

Phase Phase

Y Ct CCt PCt Y Ct CCt PCt
Y Ct 2.959 -0.387 3.097 -0.228

Coherence CCt 0.808 -7.116 0.807 -6.026
PCt 0.740 0.437 0.775 0.459

4. Diagnostics

Yt Ct Pt Yt Ct Pt Yt Ct Pt

LL 2091.669 2119.325 2119.417
R2
D 0.283 0.850 0.561 0.369 0.862 0.571 0.372 0.862 0.569

Q(20) 28.100 *34.147 25.159 24.692 **42.344 *35.387 24.614 **43.231 **34.438

5. Likelihood ratio tests

a) φ1 = φ2 = φ3 = 0 **68.912
b) Similar Cycles (Y,C, P ) **24.586
c) Similar Cycles (C,P ) 2.932

For notation see section A1. We used use two dummies to account for additive outliers in credit in 1986
Q1 and 1999 Q2, and one dummy to account for a level shift in house prices in 1991 Q4.
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Figure A.1: Trend-Cycle Decomposition United States
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Figure A.2: Trend-Cycle Decomposition United Kingdom
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Figure A.3: Trend-Cycle Decomposition Germany
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Figure A.4: Trend-Cycle Decomposition France
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Figure A.5: Trend-Cycle Decomposition Italy
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Figure A.6: Trend-Cycle Decomposition Spain
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Figure A.7: Spectral Characteristics of Cycles United States
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Figure A.8: Spectral Characteristics of Cycles United Kingdom
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Figure A.9: Spectral Characteristics of Cycles Germany
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Figure A.10: Spectral Characteristics of Cycles France
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Figure A.11: Spectral Characteristics of Cycles Italy
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Figure A.12: Spectral Characteristics of Cycles Spain
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Supplement B: Comparison with other Estimates

Figure B.1: Smoothed Cycles, Christiano-Fitzgerald Filter
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Table B.1: CF Filter Sample Correlations for Short- and Medium-Term Cycles

σ̂C (8-32) σ̂C (32-120) 8-32

U. S. Y Ct CCt PCt

Yt 1.379 2.133 Y Ct 0.829 0.536
Ct 1.747 6.359 32-120 CCt 0.800 0.441
Pt 2.550 11.684 PCt 0.830 0.763

U. K. Y Ct CCt PCt

Yt 1.297 2.570 Y Ct 0.660 0.710
Ct 2.452 10.198 32-120 CCt 0.777 0.410
Pt 4.139 12.734 PCt 0.904 0.922

Germany Y Ct CCt PCt

Yt 1.440 1.540 Y Ct 0.573 0.416
Ct 0.936 4.006 32-120 CCt 0.562 0.444
Pt 1.234 2.925 PCt 0.932 0.581

France Y Ct CCt PCt

Yt 0.875 1.806 Y Ct 0.644 0.605
Ct 1.263 3.435 32-120 CCt 0.687 0.535
Pt 2.219 8.985 PCt 0.788 0.586

Italy Y Ct CCt PCt

Yt 1.311 2.382 Y Ct 0.409 0.409
Ct 1.741 7.561 32-120 CCt 0.462 0.329
Pt 3.797 8.852 PCt 0.615 0.590

Spain Y Ct CCt PCt

Yt 0.759 3.688 Y Ct 0.387 0.486
Ct 1.989 10.199 32-120 CCt 0.835 0.163
Pt 3.674 15.976 PCt 0.865 0.700

The first two columns show the sample standard deviations of the cycles extracted with
a CF filter with frequency bands of 8-32 and 32-120 quarters, respectively. The right-
hand panel shows the maximum value of sample cross-correlations between cycles (of all
leads and lags). The lower left of the matrix shows the statistics for the 32-120 quarter
frequency band, while the upper right shows those for the 8-32 quarter frequency band.
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