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Abstract

We propose a two-stage estimation procedure to identify the effects of time-invariant re-

gressors in a dynamic version of the Hausman-Taylor model. We first estimate the coeffi-

cients of the time-varying regressors and subsequently regress the first-stage residuals on the

time-invariant regressors providing analytical standard error adjustments for the second-stage

coefficients. The two-stage approach is more robust against misspecification than GMM esti-

mators that obtain all parameter estimates simultaneously. In addition, it allows exploiting

advantages of estimators relying on transformations to eliminate the unit-specific heterogene-

ity. We analytically demonstrate under which conditions the one-stage and two-stage GMM

estimators are equivalent. Monte Carlo results highlight the advantages of the two-stage ap-

proach in finite samples. Finally, the approach is illustrated with the estimation of a dynamic

gravity equation for U.S. outward foreign direct investment.

Keywords: Dynamic panel data; Time-invariant variables; Two-stage estimation; System GMM;

Dynamic gravity equation

JEL Classification: C13; C23; F23

ECB Working Paper 1838, August 2015 1



Non-technical summary

Panel data comprises of cross-sectional units, e.g. countries, firms, households, or individuals,

observed at different points in time. The combination of cross-sectional and time series data allows

for richer econometric model specifications and more accurate conclusions. In addition, dynamic

adjustment processes can be analyzed for a broad base of cross-sectional units. In a dynamic model

past observations of the variable of interest can influence the current value. Macroeconomic output

growth regressions and microeconomic wage regressions are examples where dynamic panel data

models are used to account for the persistence of the dependent variable.

This paper analyzes the identification of effects of time-invariant regressors in dynamic panel

data models as the methods currently used can be very imprecise or are not able to handle these

regressors. Time-invariant regressors play an important role in many empirical applications but

estimation of the effects is non-trivial because there are various statistical problems that may

arise. We discuss the existing possibilities to estimate dynamic panel data models with time-

invariant explanatory variables and we propose an alternative two-stage estimation procedure. A

major advantage of the two-stage approach is that misspecified assumptions on the time-invariant

regressors do not influence the estimation results for the coefficients of time-varying variables. In

extensive simulation studies we show that the currently most widely used estimation method, the

generalized method of moments, can be quite biased whereas our method provides more precise

and robust results. Furthermore, we develop a correction term for the standard errors of the second

stage. Neglecting the correction term can generate misleading implications.

To illustrate these methods we estimate a dynamic gravity model to explain real bilateral

outward stocks of FDI for the United States. The data set was previously used by other authors to

demonstrate instrumental variable methods for static panel models with time-invariant regressors.

In this case, the time-invariant variable of interest is geographical distance. We highlight the

relevance of a dynamic model specification, the benefits of the proposed two-stage approach, and

the importance of adequately correcting the standard errors.
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1 Introduction

This paper considers estimation methods and inference for linear dynamic panel data models with

a short time dimension. In particular, we focus on the identification of coefficients of time-invariant

variables in the presence of unobserved unit-specific effects. In many empirical applications time-

invariant variables play an important role in structural equations. In labor economics researchers

are interested in the effects of education, gender, nationality, ethnic and religious background, or

other time-invariant characteristics on the evolution of wages but would still like to control for

unobserved time-invariant individual-specific effects such as worker’s ability. As a recent example,

Andini (2013) estimates a dynamic version of the Mincer equation controlling for a rich set of

time-invariant characteristics. In macroeconomic cross-country studies institutional features or

group-level effects play a role in explaining economic development. For example, Hoeffler (2002)

studies the growth performance of Sub-Saharan Africa countries by introducing a regional dummy

variable in her dynamic panel data model. Cinyabuguma and Putterman (2011) focus on within

Sub-Saharan differences by adding socio-economic and geographic factors to the analysis. The

analysis of bilateral trade or foreign direct investment (FDI) determinants is often based on gravity

models with geographical distance as a key time-invariant factor. To account for the persistence of

trade flows or FDI, Kimura and Todo (2010), Olivero and Yotov (2012), and Kahouli and Maktouf

(2014) set up dynamic gravity equations.

If there is unobserved unit-specific heterogeneity, it is often hard to disentangle the effects of

the observed and the unobserved time-invariant heterogeneity. Standard fixed and random effects

estimators cannot be used because of multicollinearity problems and, when the time dimension is

short, the familiar Nickell (1981) bias in dynamic panel data models. Therefore, it is common prac-

tice in empirical work to apply the generalized method of moments (GMM) framework proposed

by Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998), amongst

others. However, as Binder et al. (2005) and Bun and Windmeijer (2010) emphasize, GMM estima-

tors might suffer from a weak instruments problem when the autoregressive parameter approaches

unity or when the variance of the unobserved unit-specific effects is large. Moreover, the number of

instruments can rapidly become large relative to the sample size. The consequences of instrument

proliferation, summarized by Roodman (2009), range from biased coefficient and standard error
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estimates to weakened specification tests.

In order to overcome the weak instruments problem in the context of estimating the effects

of time-varying regressors, Hsiao et al. (2002) propose a transformed likelihood approach that is

based on the model in first differences. A shortcoming of this approach is the inability to estimate

the coefficients of time-invariant regressors. In this paper, we propose a two-stage estimation

procedure to identify the latter. In the first stage, we estimate the coefficients of the time-varying

regressors. Subsequently, we regress the first-stage residuals on the time-invariant regressors.1 We

achieve identification by using instrumental variables in the spirit of Hausman and Taylor (1981),

and adjust the second-stage standard errors to account for the first-stage estimation error. Our

methodology applies to any first-stage estimator that consistently estimates the coefficients of the

time-varying variables without relying on coefficient estimates for the time-invariant regressors.

Among others, the quasi-maximum likelihood (QML) estimator of Hsiao et al. (2002) as well as

GMM estimators qualify as potential first-stage candidates. A major advantage of the two-stage

approach is the invariance of the first-stage estimates to misspecifications regarding the model

assumptions on the correlation between the time-invariant regressors and the unobserved unit-

specific effects.2 However, under particular conditions feasible efficient one-stage and two-stage

GMM estimation are shown to be (asymptotically) equivalent.

We perform Monte Carlo experiments to evaluate the finite sample performance in terms of

bias, root mean square error (RMSE), and size statistics of our two-stage procedure relative to

GMM estimators that obtain all coefficient estimates simultaneously. The results suggest that the

two-stage approach is to be preferred when the researcher is interested in the coefficients of both

time-varying and time-invariant variables. However, the quality of the second-stage estimates de-

pends crucially on the precision of the first-stage estimates. Among our first-stage candidates the

QML estimator performs very well. GMM estimators can be an alternative if effective measures

are taken to avoid instrument proliferation. Our Monte Carlo analysis unveils sizable finite sample

1For a static model, Plümper and Troeger (2007) propose a similar three-stage approach that they label fixed
effects vector decomposition. Their first stage is a classical fixed effects regression. In a recent symposium on
this method, Breusch et al. (2011) and Greene (2011) show that the first two stages can be characterized by an
instrumental variable estimation with a particular choice of instruments, and that the third stage is essentially
meaningless.

2Hoeffler (2002) and Cinyabuguma and Putterman (2011) argue similarly. They apply GMM estimation in the
first stage, and ordinary least squares estimation in the second stage. However, they do not correct the second-stage
standard errors.
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biases when the GMM instruments are based on the full set of available moment conditions, in

particular regarding the coefficients of time-invariant regressors. Finally, in contrast to conven-

tionally computed standard errors our adjusted second-stage standard errors account remarkably

well for the first-stage estimation error.

To illustrate these methods we estimate a dynamic gravity equation for FDI based on U.S.

data previously employed by Egger and Pfaffermayr (2004a). We find strong evidence for history

dependence of the real bilateral stock of outward FDI. Neglecting the dynamic nature of the model

results in a sizable overestimation of the effect of the time-invariant geographical distance variable.

Again, the correct adjustment of the second-stage standard errors proves to be important for valid

inference.

The paper is organized as follows: Section 2 introduces the dynamic Hausman and Taylor (1981)

model. Section 3 describes one-stage GMM estimators that identify all coefficients simultaneously,

while Section 4 lays out the two-stage procedure that yields sequential coefficient estimates. Section

5 contrasts the two approaches on theoretical grounds, while Section 7 provides simulation evidence

on the performance of the two-stage approach in comparison to one-stage GMM estimators under

different scenarios. In Section 8 we discuss the empirical application, and Section 9 concludes.

2 Model

Consider the dynamic panel data model with units i = 1, 2, . . . , N , and a fixed number of time

periods t = 1, 2, . . . , T , with T ≥ 2:

yit = λyi,t−1 + x′itβ + f ′iγ + eit, eit = αi + uit, (1)

where xit is a Kx × 1 vector of time-varying variables. The initial observations of the dependent

variable, yi0, and the regressors, xi0, are assumed to be observed. fi is a Kf × 1 vector of observed

time-invariant variables that includes an overall regression constant, and αi is an unobserved unit-

specific effect of the i-th cross section. In a strict sense, αi is called a fixed effect if it is allowed to be

correlated with all of the regressor variables xit and fi, and it is a random effect if it is independently

distributed. Note that αi is correlated with the lagged dependent variable by construction. In this
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paper we look at a hybrid (or intermediate case) of the dynamic fixed and random effects models

where some of the regressors are correlated with αi but not all of them. Throughout the paper we

maintain the following assumptions:

Assumption 1: The disturbances uit and the unobserved unit-specific effects αi are independently

distributed across i and satisfy E[uit] = E[αi] = 0, E[uisuit] = 0 ∀s 6= t, and E[αiuit] = 0.

Identification of the (structural) parameters λ, β and γ now crucially hinges on the assumptions

about the dependencies between the regressors and the unit-specific effects.

Assumption 2: The explanatory variables can be decomposed as xit = (x′1it,x
′
2it)
′ and fi =

(f ′1i, f
′
2i)
′ such that E[αi|x1it, f1i] = 0, E[αi|x2it] 6= 0 and E[αi|f2i] 6= 0.

The resulting model is the dynamic counterpart of the Hausman and Taylor (1981) model.

For further reference, the lengths of the subvectors are Kx1, Kx2, Kf1, and Kf2, respectively. If

Kx2 = Kf2 = 0 the model collapses to the dynamic random effects model. Contrarily, Kx1 = 0

and Kf1 = 1 (the constant term) leads to the dynamic fixed effects model. In the remaining

sections, we occasionally distinguish between strictly exogenous and predetermined regressors xit

with respect to the disturbance term uit.

Assumption 3: The time-invariant regressors fi are exogenous with respect to the disturbances

uit, while the time-varying regressors xit can be strictly exogenous, E[uit|xi0,xi1, . . . ,xiT , fi;αi] =

0, or predetermined, E[uit|xi0,xi1, . . . ,xit, fi;αi] = 0 and E[uit|xis] 6= 0 ∀s > t.3

To facilitate the subsequent derivations we introduce the following notation. We can write

model (1) as

yi = λyi,(−1) + Xiβ + Fiγ + ei, ei = αiιT + ui, (2)

where yi = (yi1, yi2, . . . , yiT )′ is the vector of stacked observations of the dependent variable for

unit i. yi,(−1),Xi,Fi, ei, and ui are defined accordingly. ιT is a T × 1 vector of ones. When the

3For simplicity, we abstract from endogenous regressors with respect to uit. They can be easily incorporated by
adjusting the GMM moment conditions appropriately. See Blundell et al. (2000).

ECB Working Paper 1838, August 2015 6



data is stacked for all units, for example y = (y′1,y
′
2, . . . ,y

′
N )′, subscripts are omitted:

y = λy(−1) + Xβ + Fγ + e, e = α+ u. (3)

Finally, let W = (y(−1),X) be the matrix of time-varying regressors with corresponding coefficient

vector θ = (λ,β′)′, and W̃ = (y(−1),X,F) be the full regressor matrix.

3 One-Stage GMM Estimation

We can estimate all model parameters simultaneously by choosing appropriate instruments for

the variables that are endogenous with respect to the unobserved unit-specific effects. In the

following, we discuss generalized method of moments estimators that are based on the linear

moment conditions

E[Z′iHei] = 0, (4)

where Zi is a matrix of Kz instruments, and H is a deterministic transformation matrix.

For the static model with strictly exogenous regressors xit, Hausman and Taylor (1981) propose

an instrumental variable estimator that uses deviations from their within-group means, xit − x̄i,

as instruments for the regressors xit, and the within-group means x̄1i as instruments for f2i.
4

The time-invariant regressors f1i serve as their own instruments. We can extend this estimator to

the dynamic model by adding an appropriate instrument for the lagged dependent variable. For

example, Anderson and Hsiao (1981) propose to use yi,t−2 or ∆yi,t−2 as instruments for ∆yi,t−1.

With yi,(−2) = (yi0, yi1, . . . , yi,T−2)′, the resulting estimator satisfies the moment conditions (4)

with

Zi =


yi,(−2) 0 0 0

0 Xi 0 0

0 0 X1i F1i

 , and H =


D

Q

P

 ,

for the (T − 1)× T first-difference transformation matrix D = [(0, IT−1)− (IT−1,0)], where IT−1

is the identity matrix of order T −1, and the T ×T idempotent and symmetric projection matrices

4To improve on the efficiency of the estimator, Amemiya and MaCurdy (1986) propose to use all time periods of
x1it separately as instruments instead of the within-group means. Breusch et al. (1989) additionally suggest using
the deviation of each individual time period from the within-group means as separate instruments.
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P = ιT (ι′T ιT )−1ι′T and Q = IT − P, where P and Q transform the observations into within-

group means and deviations from within-group means, respectively. Importantly, both D and Q

are orthogonal to time-invariant variables. Due to the block-diagonal structure of Zi, only the

instruments (X1i,F1i) in the lower-right block of Zi are of use to identify γ. Therefore, as in

the static model of Hausman and Taylor (1981), a necessary condition for the identification of all

coefficients (θ′,γ′)′ with this extended estimator is Kx1 ≥ Kf2.

Since the above estimator does not exploit all model implied moment conditions, it will be

inefficient. Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998)

derive additional linear moment conditions for the model in first differences and in levels. Ahn

and Schmidt (1995) add further moment conditions under homoscedasticity of uit that are in part

nonlinear. We present the full set of linear moment conditions in Appendix A. For the equations

in first differences, E[Z′diDei] = 0, and in levels, E[Z′liei] = 0, the moment conditions can be

combined by defining

Zi =

Zdi 0

0 Zli

 , and H =

D

IT


in equation (4). It is well documented by Blundell and Bond (1998) and others (in the absence

of time-invariant regressors) that the GMM estimator with instruments for the first-differenced

equation only suffers from a potentially severe weak instruments problem when λ→ 1. Under an

additional mean stationarity assumption, Assumption 5 in Appendix A, they suggest to addition-

ally use the first differences of the time-varying variables as instruments for the equation in levels.

However, Bun and Windmeijer (2010) demonstrate that these instruments also can become weak,

in particular when the variance ratio of the unit-specific effects relative to the idiosyncratic error

term exceeds unity. To the contrary, the instruments for the first-differenced equation may regain

strength when mean stationarity is not satisfied, as demonstrated by Hayakawa (2009).

Yet, since DιT = 0, the instruments that are relevant for the identification of the coefficients

γ need to be placed in Zli. Following Arellano and Bond (1991) and Arellano and Bover (1995),

the following Kx1(T + 1) +Kf1 non-redundant linear moment conditions arise under Assumption
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2 for the model in levels:

E[x1i0ei1] = 0, and E[x1iteit] = 0, t = 1, 2, . . . , T, (5)

E

[
T∑
t=1

f1ieit

]
= 0. (6)

Consequently, in the absence of external instruments a necessary condition for the identification

of all coefficients (θ′,γ′)′ in equation (1) is that Kx1(T + 1) ≥ Kf2.5 Because levels instead of

first differences of the variables x1it (and f1i) are used in the moment conditions (5) and (6), the

aforementioned weak instruments problem by Bun and Windmeijer (2010) is not an issue here.

Nevertheless, a general weak correlation problem of the instruments x1it with the instrumented

regressors f2i might still occur.

Remark 1: In practice, it will often be hard to justify that separate time periods of the ex-

ogenous time-varying regressors provide sufficient explanatory power for the instrumented time-

invariant regressors after partialling out the initial observations or within-group means, that is

E[f2i|x1i0,X1i, f1i] = E[f2i|x1i0, f1i] or E[f2i|x1i0,X1i, f1i] = E[f2i|x̄1i, f1i]. The identification con-

dition then tightens again to Kx1 ≥ Kf2.

Define H̃ = IN ⊗H, where ⊗ denotes the Kronecker product. Based on the sample moments

N−1Z′H̃e, we can now derive the GMM estimator that minimizes the following distance function:

θ̂
γ̂

 = arg min
θ,γ

e′H̃′ZVNZ′H̃e,

where VN is a positive definite weighting matrix. If all elements in (θ′,γ′)′ are identified, that is

W̃′H̃′ZVNZ′H̃W̃ is non-singular, we obtain

θ̂
γ̂

 =
(
W̃′H̃′ZVNZ′H̃W̃

)−1

W̃′H̃′ZVNZ′H̃y. (7)

5External instruments can be incorporated in a straightforward way.
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The following familiar result under the data generating process (1) applies:6

Lemma 1: If the moment conditions (4) are satisfied and all coefficients are identified, then under

standard regularity conditions the joint asymptotic distribution of the one-stage GMM estimator

(7) is:

√
N

θ̂ − θ
γ̂ − γ

 a∼ N (0,Σ) , (8)

with

Σ = (S′VS)−1S′VΞVS(S′VS)−1, (9)

where S = plimN−1Z′H̃W̃, Ξ = plimN−1Z′H̃ee′H̃′Z, and V = plim VN .

From equation (9) in Lemma 1 we can infer the following statement on the efficiency of the

GMM estimator:7

Lemma 2: The GMM estimator is asymptotically efficient for a given instruments matrix Z and

transformation matrix H̃ if V = Ξ−1.

Blundell and Bond (1998) and Windmeijer (2000) emphasize that for dynamic panel data

models, in general, efficient GMM estimation is infeasible without having a prior estimate of Ξ.

A feasible efficient GMM estimator can be obtained in two steps. In the first step, choosing

any positive definite matrix VN will yield consistent but generally inefficient estimates θ̂ and γ̂.

The second-step estimator is then based on VN = Ξ̂−1. A consistent unrestricted estimate of Ξ is

obtained as Ξ̂ = N−1
∑N
i=1 Z′iHêiê

′
iH
′Zi, with êi = yi−Wiθ̂−Fiγ̂.8 The importance of choosing

an appropriate first-step weighting matrix should not be underestimated in applied work. Although

the second-step GMM estimator is asymptotically unaffected, its finite sample performance still

depends on the choice of VN in the first step. Windmeijer (2005) shows that asymptotic standard

error estimates of the two-step GMM estimator can be severely downward biased in finite samples.

He derives a finite sample variance correction. Alternatives to the two-step GMM estimator that

6See for instance Hansen (1982), Theorem 3.1, or Newey and McFadden (1994), Theorem 3.4.
7This result dates back to Hansen (1982), Theorem 3.2, and was generalized by Newey and McFadden (1994),

Theorem 5.2.
8For more details on efficient GMM estimation see Appendix B.
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are targeted to improve the finite sample performance include the iterated and the continuously

updated GMM estimators, see for example Hansen et al. (1996).

Moreover, GMM estimators might suffer from severe finite sample distortions that arise from

having too many instruments relative to the sample size, as stressed by Roodman (2009) among

others. The instrument count can be reduced by forming linear combinations ZiR of the columns

of Zi. For any deterministic transformation matrix R, this also leads to a valid set of moment con-

ditions, E[R′Z′iHei] = 0. The GMM estimator (7) is then based on the transformed instruments

ZiR. We provide examples of relevant transformation matrices in Appendix C.

4 Two-Stage Estimation

When estimating all regression coefficients simultaneously, a misclassification of time-invariant

regressors as being uncorrelated with the unit-specific effects might lead to a biased estimation

of all coefficients including λ and β. In this section, we lay down a robust two-stage estimation

procedure. In a first stage, we subsume the time-invariant variables fi under the unit-specific effects,

α̃i = αi + f ′iγ, and consistently estimate the coefficients λ and β independent of the assumptions

on the correlation structure between fi and αi. In the second stage, we recover γ.

The first-stage model is

yit = λyi,t−1 + x′itβ + ᾱ+ ẽit, ẽit = α̃i − ᾱ+ uit, (10)

where ᾱ = E[α̃i]. To obtain the first-stage estimates λ̂ and β̂ we can apply a transformation that

eliminates the time-invariant unit-specific effects α̃i. In particular, the GMM estimator of Arellano

and Bond (1991) and the QML estimator of Hsiao et al. (2002) are based on the first-differenced

model, while Arellano and Bover (1995) propose a GMM estimator based on forward orthogonal

deviations. Alternatively, system GMM estimators as discussed in Section 3 that also make use

of the level relationship can be applied taking into account that the time-invariant variables fi

are now part of the first-stage error term ẽit. If Kx1 > 0 but some or all of the variables in x1it

are correlated with fi then these variables are uncorrelated with αi but not with α̃i. Hence, the

first-stage instruments need to be adjusted appropriately. We do not restrict the analysis to any
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particular first-stage estimator but make the following assumption:9

Assumption 4: θ̂ is a consistent asymptotically linear first-stage estimator with influence function

ψi such that

√
N(θ̂ − θ) =

1√
N

N∑
i=1

ψi + op(1), (11)

E[ψi] = 0, and E[ψiψ
′
i] = Σθ.

Asymptotic normality of θ̂ follows under standard regularity conditions.10 Also, denote ψ =∑N
i=1ψi.

In the second stage, we estimate the coefficients γ of the time-invariant variables based on the

level relationship:

yit − λ̂yi,t−1 − x′itβ̂ = f ′iγ + vit, vit = αi + uit − (λ̂− λ)yi,t−1 − x′it(β̂ − β). (12)

In particular, note the two additional terms in the error term vit that are due to the first-stage

estimation error such that this second-stage error term is no longer independent and identically

distributed. We can now set up a second-stage GMM estimator based on the asymptotic moment

conditions

lim
N→∞

E

[
1

N

N∑
i=1

Z′γivi

]
= 0. (13)

Under Assumption 2, we can use the observations x1it as instruments for the endogenous regressors

f2i. The resulting non-redundant asymptotic moment conditions are similar to those given by

equations (5) and (6):

lim
N→∞

E

[
1

N

N∑
i=1

x1i0vi1

]
= 0, and lim

N→∞
E

[
1

N

N∑
i=1

x1itvit

]
= 0, t = 1, 2, . . . , T, (14)

lim
N→∞

E

[
1

N

N∑
i=1

T∑
t=1

f1ivit

]
= 0. (15)

9We pick up the case of a first-stage GMM estimator in the next section. Two-stage QML estimation is briefly
discussed in Appendix E.

10Compare Newey and McFadden (1994), Chapter 3.
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The corresponding instruments matrix is given as Zγi = (Zxi,F1i), with

Zxi =



x′1i0 x′1i1 0 · · · 0

0 0 x′1i2
...

...
...

. . . 0

0 0 · · · 0 x′1iT


,

which is valid both for strictly exogenous and predetermined variables x1it. Consequently, the order

condition from the previous section transmits to the second-stage GMM estimation: A necessary

condition for the identification of the coefficients γ in equation (12) is that Kx1(T + 1) ≥ Kf2.11

The second-stage GMM estimator then solves12

ˆ̂γ = arg min
γ

v′ZγVγNZ′γv,

for a positive definite weighting matrix VγN . When γ is identified, the second-stage GMM esti-

mator is given by:

ˆ̂γ =
(
F′ZγVγNZ′γF

)−1
F′ZγVγNZ′γ(y −Wθ̂). (16)

We can now formulate the following proposition:

Proposition 1: If Assumption 4 holds, the moment conditions (4) are satisfied and all coefficients

are identified, then under standard regularity conditions the asymptotic distribution of the second-

stage GMM estimator (16) is:
√
N
(

ˆ̂γ − γ
)
a∼ N (0,Σγ) , (17)

with

Σγ = (S′FVγSF )−1SF
′VγΞvVγSF (S′FVγSF )−1, (18)

where SF = plimN−1Z′γF, Ξv = plimN−1Z′γvv′Zγ , and Vγ = plim VγN . Moreover,

Ξv = Ξe + SWΣθS
′
W − Ξ′θeS

′
W − SWΞθe, (19)

11The qualifications of Remark 1 apply again.
12A double hat denotes second-stage estimates while a single hat refers to first-stage estimates.
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where SW = plimN−1Z′γW, Ξe = plimN−1Z′γee′Zγ , and Ξθe = plimN−1ψe′Zγ .

Proof. Inserting model (3) into equation (16) and scaling by
√
N we obtain:

√
N
(

ˆ̂γ − γ
)

=

[(
1

N
F′Zγ

)
VγN

(
1

N
Z′γF

)]−1(
1

N
F′Zγ

)
VγN

(
1√
N

Z′γv

)
= (S′FVγSF )−1SF

′Vγ

[
1√
N

Z′γe− SW
√
N(θ̂ − θ)

]
+ op(1)

= (S′FVγSF )−1SF
′Vγ

[
1√
N

N∑
i=1

(Z′γiei − SWψi)

]
+ op(1),

where the last equality follows from Assumption 4. By applying the central limit theorem,

N−1/2
∑N
i=1(Z′γiei−SWψi)

a∼ N (0,Ξe + SWΣθS
′
W −Ξ′θeS

′
W −SWΞθe), and equation (18) follows

from the continuous mapping theorem.13

Remark 2: For completeness, the asymptotic covariance matrix between the first-stage and the

second-stage estimator is given by

lim
N→∞

E

[(
θ̂ − θ

)(
ˆ̂γ − γ

)′]
= (ΣθS

′
W + Ξθe)VγSF (S′FVγSF )−1. (20)

In analogy to Lemma 2, we can state the following corollary:

Corollary 1: The second-stage GMM estimator ˆ̂γ is efficient for a given first-stage estimator θ̂

and instruments matrix Zγ if Vγ = Ξ−1
v .

Similar to one-stage GMM estimators, feasible efficient estimation requires an initial estimate

of Ξv unless Z′γF is non-singular. A consistent unrestricted estimate of Ξ is obtained as

ˆ̂
Ξv =

ˆ̂
Ξe +

ˆ̂
SW Σ̂θ

ˆ̂
S′W −

ˆ̂
Ξ′θe

ˆ̂
S′W −

ˆ̂
SW

ˆ̂
Ξθe, (21)

where
ˆ̂
SW = N−1Z′γW. An estimate of Σθ is readily available from the first-stage regression. An

estimate of Ξe can be obtained as
ˆ̂
Ξe = N−1

∑N
i=1 Z′γi

ˆ̂eiˆ̂e
′
iZγi, where ˆ̂ei = yi −Wiθ̂ − Fi ˆ̂γ for

a consistent initial estimate ˆ̂γ. Obtaining an estimate of Ξθe is more involved as it relies on the

13Compare Newey and McFadden (1994), Chapter 6.
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product of the influence function ψi from the first stage and the moment function from the second

stage:14

ˆ̂
Ξθe =

1

N

N∑
i=1

ψ̂i
ˆ̂e′iZγi. (22)

Importantly, ignoring the first-stage estimation error by setting
ˆ̂
Ξv =

ˆ̂
Ξe might not only yield an

inefficient second-stage estimator but also produces inconsistent standard error estimates of ˆ̂γ. In

general, the direction of the bias of uncorrected standard errors is a priori unclear unless Ξθe = 0.

In the latter case, the difference Ξv − Ξe = SWΣθS
′
W is a positive semi-definite matrix and,

consequently, standard error estimates ignoring the correction term will be too small.15 Ξθe = 0

holds for example in the special case where we consider a first-stage GMM estimator that uses

moment conditions for the first-differenced model only, that is H = D, all second-stage instruments

Zγi are time-invariant, and the errors uit are independent and homoscedastic across units and time.

Finally, ignoring the first stage is only valid if SW = 0.

Remark 3: As an alternative to the strong Assumption 2 that requires some regressors to be

uncorrelated with the unobserved unit-specific effects αi in model (1), we can consider a correlated

random effects assumption in the spirit of Mundlak (1978), E[αi|Xi,Fi] = b+x̄′iπ, or Chamberlain

(1982), E[αi|Xi,Fi] = b +
∑T
s=0 x′isπs. Notice that the time-invariant regressors are part of the

conditioning set but do not appear at the right-hand side. Either of these assumptions allows

the time-varying regressors to be correlated with the unobserved effects, although not in an arbi-

trary way. The time-invariant regressors are as well allowed to be correlated with them but only

indirectly through their correlation with the within-group means x̄i or some linear combination

of the observations xis. Taking for example the Mundlak (1978) approach, we can then replace

αi = b + x̄′iπ + ηi in the second-stage equation (12) and treat x̄i as additional time-invariant re-

gressors. In this situation, all time-invariant variables serve as instruments for themselves and the

coefficients γ can be consistently estimated at the second stage (besides the regression constant

for which we obtain plim ˆ̂γ1 = γ1 + b).

14We derive the influence function for a first-stage GMM estimator in Appendix D and for a first-stage QML
estimator in Appendix E.

15A generalization of this result can be found in Newey (1984).
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5 One-Stage versus Two-Stage GMM Estimation

We are now in a position to shed more light on one-stage and two-stage GMM estimators and to

contrast the two. To facilitate the following exposition, denote by (θ̂
′
s, γ̂
′
s)
′ the one-stage system

GMM estimator (7) and decompose its weighting matrix VN = LL′ with rk(L) = Kz. Also define

y∗ = L′Z′H̃y, W∗ = L′Z′H̃W, and F∗ = L′Z′H̃F. The following partitioned regression result

will be helpful:

θ̂s = (W∗′MFW∗)−1W∗′MFy∗, (23)

γ̂s = (F∗′F∗)−1F∗′
(
y∗ −W∗θ̂

)
, (24)

where MF = IKz −F∗(F∗′F∗)−1F∗′ is an idempotent and symmetric projection matrix. Further-

more, partition the weighting matrix as

VN =

VdN VdlN

V′dlN VlN

 , (25)

conformable for multiplications ZdVdNZ′d and ZlVlNZ′l. As an alternative consider the two-stage

GMM estimator (θ̂
′
d,

ˆ̂γ′d)
′, where θ̂d is based on the moment conditions E[Z′diDei] = 0 for the

transformed model only, and with weighting matrix VθN :

θ̂d =
(
W′D̃′ZdVθNZ′dD̃W

)−1

W′D̃′ZdVθNZ′dD̃y, (26)

where D̃ = IN ⊗D. The second-stage estimator ˆ̂γd is given by equation (16) based on θ̂d in the

first stage. We can now make the following claim:

Proposition 2: It holds that θ̂s = θ̂d, with θ̂s and θ̂d given by equations (23) and (26), respec-

tively, if Z′lF is non-singular and VθN = VdN −VdlNV−1
lNV′dlN .

Proof. Observe that F′H̃′Z = (F′D̃′Zd,F
′Zl) = (0,F′Zl) since D̃F = 0. Consequently, F∗′F∗ =

F′ZlVlNZ′lF. With Z′lF being non-singular, it follows that (F∗′F∗)−1 = (Z′lF)−1V−1
lN (F′Zl)

−1.
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Let VθN = VdN −VdlNV−1
lNV′dlN . Then,

LMFL′ = VN −VN

0 0

0 V−1
lN

VN =

VθN 0

0 0

 ,

such that after straightforward algebra equation (23) boils down to equation (26). Alternatively,

if Z′dD̃
′W is non-singular as well, θ̂s = θ̂d = (Z′dD̃

′W)−1Z′dD̃
′y independent of the choice of the

weighting matrices.

When Z′lF is non-singular, the coefficients γ are exactly identified because the time-invariant

regressors are orthogonal to the instruments for the first-differenced equation. But then the in-

struments for the level equation cannot be used any more to identify the coefficients θ, and θ̂s

consequently equals θ̂d with an appropriate choice of the weighting matrix. A similar proposition

holds for the coefficients γ under the additional restriction that the level instruments of the one-

stage system GMM estimator equal the instruments of the second-stage GMM estimator, Zl = Zγ :

Proposition 3: With Zl = Zγ , it holds that γ̂s = ˆ̂γd, with γ̂s and ˆ̂γd given by equations (24)

and (16), respectively, if Z′γF is non-singular, VθN = VdN , and VdlN = 0.

Proof. With F∗′F∗ = F′ZlVlNZ′lF and Zl = Zγ , equation (24) can be written as

γ̂s = (F′ZγVlNZ′γF)−1F′ZγVlN (V−1
lNV′dlNZ′dD̃ + Z′γ)(y −Wθ̂s).

With Z′γF being non-singular, this equation reduces further to

γ̂s = (Z′γF)−1(V−1
lNV′dlNZ′dD̃ + Z′γ)(y −Wθ̂s).

Also, equation (16) becomes ˆ̂γd = (Z′γF)−1Z′γ(y −Wθ̂d) independent of VγN . Consequently,

γ̂s = ˆ̂γd if VdlN = 0 and θ̂s = θ̂d. The latter results as a consequence of Proposition 2 by

setting VθN = VdN − VdlNV−1
lNV′dlN = VdN . Alternatively, if Z′dD̃

′W is non-singular as well,

Z′dD̃(y −Wθ̂d) = 0 and again θ̂s = θ̂d without any restriction on the weighting matrices.

Taken together, Propositions 2 and 3 state that one-stage and two-stage GMM estimation
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are equivalent for a particular choice of the weighting matrices if both utilize the same linearly

independent instruments for the equation in levels and their number equals the count of time-

invariant regressors. In this case, the first-stage GMM estimator of the two-stage approach is

based on the moment conditions for the transformed model only. Leaving aside the trivial case

of exact identification of the coefficients θ as well, we can now infer a statement on asymptotic

efficiency. When VN is the optimal weighting matrix for the estimator θ̂s according to Lemma 2,

then an optimal weighting matrix for the estimator θ̂d is given by VθN = VdN −VdlNV−1
lNV′dlN

as can be easily seen by calculating the partitioned inverse of VN . This corresponds to the

condition that is required by Proposition 2. However, for equivalence of the one-stage and the

two-stage estimators, Proposition 3 requires a block-diagonal weighting matrix VN of the one-

stage estimator such that VdlN = 0. It is clear that this restricted estimator is less efficient than

the feasible efficient one-stage GMM estimator in general unless the optimal one-stage weighting

matrix is indeed block-diagonal asymptotically. A relevant case where this holds is a restricted

covariance structure of the error term, E[eie
′
i|Zi] = σ2

αιT ι
′
T + σ2

uIT , together with time-invariance

of the level instruments Zli. In this case, the feasible efficient one-stage and two-stage GMM

estimators will be (asymptotically) identical, and therefore also have the same variance.

Remark 4: If the optimal weighting matrices VN or VθN are based on separate initial consistent

estimates (of σ2
u), the equivalence of VθN and VdN −VdlNV−1

lNV′dlN only holds asymptotically,

and the resulting feasible efficient estimators can be numerically different in finite samples, even if

all other conditions of Propositions 2 and 3 are satisfied.

If the moment conditions for the level equation outnumber the time-invariant regressors, the

one-stage and the two-stage GMM estimators will generally be different because the information

contained in the level instruments Zli is no longer exclusively used to identify γ. A clear ranking

of the two estimators in terms of efficiency is not possible anymore. Also, a misspecification of the

level moment conditions might now turn the coefficient estimates for the time-varying regressors

inconsistent.
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6 Testing the Overidentifying Restrictions

For the identification of the coefficients of the time-invariant regressors, Assumption 2 is crucial, and

a testing procedure for the validity of the regressor classification is desirable. Whenever the model

parameters are overidentified, we can proceed along the lines of the Hansen (1982) test. If we cannot

reject the null hypothesis of joint validity of the overidentifying restrictions for the one-stage GMM

estimator (7), this suggests that the model is correctly specified. A rejection of the test, however,

is not very informative about the source of misspecification due to the typically large number

of overidentifying restrictions. Besides a wrong classification of regressors as being uncorrelated

with the unit-specific effects under the Hausman and Taylor (1981) Assumption 2, other reasons

might be undetected serial correlation of the errors,16 a misclassification of predetermined (or

endogenous) time-varying regressors as strictly exogenous, or a violation of the mean stationarity

Assumption 5.

With regard to the moment conditions (5) and (6) that are of particular interest, a difference-in-

Hansen test for a subset of the moment conditions as proposed by Eichenbaum et al. (1988) is not

helpful either. The coefficients γ will be generally unidentified under the restricted estimator that

excludes the suspicious instruments, unless the instruments obtained from these moment conditions

outnumbers the time-invariant regressors by more than the number of excluded instruments. Even

if a difference-in-Hansen test is feasible, we might be confronted with a weak instruments problem

under the restricted estimation if we exclude particularly relevant instruments.

The two-stage approach outlined in Section 4 offers a successive testing strategy. At the first

stage, specification tests should be carried out to gain confidence in the consistency of the coeffi-

cient estimates for the time-varying regressors. Subsequently, such model misspecifications can be

excluded under the alternative hypothesis for the Hansen (1982) at the second stage. Based on

the two-stage residuals ˆ̂e,17 we can then compute the Hansen (1982) test statistic for the validity

of the second-stage overidentifying restrictions only:

ˆ̂τγ =

(
1√
N

ˆ̂e′Zγ

)
ˆ̂
Ξ−1
v

(
1√
N

Z′γ
ˆ̂e

)
. (27)

16Arellano and Bond (1991) propose a test for serial correlation based on the first-differenced residuals.
17Notice that ˆ̂e = ˆ̂v because the first-stage estimation error drops out when inserting estimates for the unknown

population parameters.
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With an optimal weighting matrix
ˆ̂
Ξ−1
v , the test statistic has a limiting χ2 distribution with

Kzγ −Kf degrees of freedom, where Kzγ denotes the number of linearly independent second-stage

instruments in Zγ . Importantly,
ˆ̂
Ξv is a consistent estimate of the variance matrix Ξv in equation

(19) that accounts for the first-stage estimation error.

7 Monte Carlo Simulation

7.1 Simulation Design

We conduct Monte Carlo experiments to analyze the finite sample performance of the two-stage

approach in comparison to one-stage GMM estimators. To keep the simulations economical we

consider a dynamic panel data model with a single time-varying regressor xit that is correlated

with the unobserved unit-specific effects, and one time-invariant regressor fi that is uncorrelated

with them. In practice, the researcher will typically face a larger number of regressors. While the

fundamental results should carry over to larger-dimensional models, we note that finite sample dis-

tortions of GMM estimators that result from too many overidentifying restrictions might aggravate

by adding additional regressors. We generate yit and xit according to the following processes:

yit = λyi,t−1 + βxit + γfi + αi + uit, uit
iid∼ N (0, σ2

u), (28)

and

xit = φxi,t−1 + νρfi + ν
√

1− ρ2ηi + εit, εit
iid∼ N (0, σ2

ε ), (29)

such that xit is strictly exogenous with respect to uit.
18

The observed time-invariant variable fi is obtained as an independent binary variable from a

Bernoulli distribution with success probability p. The unobserved unit-specific effects αi and ηi

18Modeling xit as predetermined or endogenous does not affect the qualitative conclusions regarding the coefficient
of the time-invariant regressor for appropriately adjusted GMM estimators. It will, however, turn the two-stage
QML estimator inconsistent because the first-difference transformation at the first stage requires strict exogeneity.
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are generated from a joint normal distribution:

αi
ηi

 ∼ N

µα
µη

 ,

 σ2
α σαη

σαη p(1− p)


 , (30)

such that the variances of ηi and fi coincide. The particular design of the process for xit guarantees

that the correlation between xit and fi can be altered while keeping the variance of xit unchanged,

because

V ar(xit) =
1

(1− φ)2

[
ν2p(1− p) +

1− φ
1 + φ

σ2
ε

]
(31)

is independent of ρ. ν ≥ 0 is introduced as a scale parameter. The correlation between xit and fi

is characterized by:

Corr(xit, fi) = ρ

√
ν2p(1− p)

ν2p(1− p) + 1−φ
1+φσ

2
ε

. (32)

Since ρ ∈ [−1, 1], it can be interpreted as a correlation coefficient net of the variation coming from

εit.

We set the long-run coefficient β/(1− λ) = 1 and initialize the processes at t = −50 with their

long-run means given the realizations of the unit-specific effects:

yi,−50 = xi,−50 +
1

1− λ
(γfi + αi) , (33)

xi,−50 =
ν

1− φ

(
ρfi +

√
1− ρ2ηi

)
, (34)

and discard the first 50 observations for the estimation. The covariance between the two unobserved

fixed effects αi and ηi is set to σαη = σα
√
p(1− p)/2 which creates a positive correlation between

xit and αi. We also fix γ = 1, σ2
u = 1, ν = 1, p = 0.5 and µα = µη = 0. To ensure an

adequate degree of fit, we obtain the population value of the coefficient of determination for the

first-differenced model, R2
∆y, in a similar fashion as Hsiao et al. (2002). For the data generating

process stated above it is given by

R2
∆y =

β2σ2
ε

β2σ2
ε + (1 + φ)(1− λφ)σ2

u

. (35)
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We fix R2
∆y = 0.2 and determine σ2

ε endogenously as

σ2
ε =

R2
∆y

1−R2
∆y

(1 + φ)(1− λφ)

β2
σ2
u. (36)

Finally, we simulate the data with different combinations for the remaining parameters, namely λ ∈

{0.4, 0.8, 0.99}, σ2
α ∈ {1, 3}, φ ∈ {0.4, 0.8}, and ρ ∈ {0, 0.4}. The sample size under consideration

is T ∈ {4, 9} and N ∈ {50, 500}. In total, we do 3000 repetitions for each simulation.

For the two-stage approach we consider system GMM estimators and the QML estimator of

Hsiao et al. (2002) as first-stage estimators. The latter is briefly described in Appendix E. We

compare the two-stage QML estimator, “2s-QML”, to various GMM estimators that use different

sets of instruments and recover the coefficient of the time-invariant regressor either in one or in two

stages. First, we set up a system GMM estimator that exploits the full set of moment conditions

given in Appendix A and recovers all parameters jointly in one stage, “1s-sGMM (full)”.19 Besides

the moment conditions (40) and (44) that result from the presence of the time-invariant regressor,

this estimator equals the one proposed by Blundell et al. (2000). To deal with the problems resulting

from too many instruments, we set up an alternative system GMM estimator with a collapsed set

of instruments, “1s-sGMM (collapsed)”.20 This reduces the number of instruments from 33 to 15

when T = 4 and from 143 to 30 when T = 9. Furthermore, we consider two-stage variants of both

GMM estimators, “2s-sGMM (full)” and “2s-sGMM (collapsed)”, respectively. To compute the

standard errors of the (first-stage) GMM estimators, we use the robust variance-covariance formula

(9) with an unrestricted estimate of Ξ. All GMM estimators are feasible efficient estimators with

an initial weighting matrix as chosen by Blundell et al. (2000). We apply the Windmeijer (2005)

correction for the standard errors. The second-stage estimates are independent of the choice of the

weighting matrix because γ is exactly identified. The corresponding standard errors are based on

formula (18) taking into account the first-stage estimation error.

19We disregard the moment conditions (41) that are due to homoscedasticity. For the regression constant we
exploit only the moment conditions (44) but not the conditions (40).

20See Appendix C for the respective transformation matrices.
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7.2 Simulation Results

Table 1 summarizes the simulation results for different values of the autoregressive parameter λ

holding fixed σ2
α = 3, φ = 0.4, and ρ = 0.4. The sample size is small with T = 4 and N = 50. As

a first observation, we recognize that the two-stage approach is very competitive. In particular for

the coefficient of the time-invariant regressor it shows a smaller RMSE than the respective one-

stage counterpart. We clearly see that the quality of the second-stage estimates hinges crucially on

the choice of the first-stage estimator. The large bias of the GMM estimators with the full set of

instruments readily transmits into poor second-stage estimates while the two-stage QML estimator

convinces us with small biases irrespective of the parameter design.

[Table 1 about here.]

The finite sample bias of GMM estimators that exploit the full set of moment conditions can

become tremendous. In the baseline scenario, λ = 0.4, it reaches 27 percent for the coefficient λ

in case of one-stage estimation, and 30 percent for two-stage estimation. The magnitude is similar

for the coefficient γ. Reducing the number of instruments with the collapsing procedure yields a

strong bias reduction. It shrinks below 3 percent for all coefficients, comparable to the bias of the

two-stage QML estimator. The root mean square error (RMSE) shows less clear a picture. While

collapsing helps for the coefficient λ, it does not improve the RMSE for β and γ. Particularly

for the latter, the reduced bias seems to come at the cost of a larger dispersion. Noteworthy, the

RMSE of the two-stage estimator with the full set of instruments is lowest among all estimators

under consideration for the coefficient of the time-invariant regressor. However, having a look

at the size distortions it is clearly visible that this smaller RMSE does not compensate the poor

performance in terms of bias relative to the GMM estimators with the collapsed instruments or

the two-stage QML estimator.21

The average ratio of the estimated standard errors to the observed standard deviation of the

estimators is in most cases reasonably close to unity. An exception are the QML estimates for the

coefficient λ when its true value is 0.4. Here, the standard error estimates fall short of the observed

standard deviation by about 13 percent. This anomaly can be explained by the observation that

21Large size distortions of the Wald test for the system GMM estimator are also documented by Bun and Wind-
meijer (2010) for the autoregressive parameter.
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the QML estimates for λ feature a bimodal distribution with one peak close to the true value of

0.4 and another one close to unity.22 When we neglect those 44 estimates (out of 3000) that are

larger than 0.8, the ratio of the standard errors to the standard deviation jumps up to 1.03. The

problematic estimates of the first-stage QML estimator also affect the second-stage estimation of

the coefficient γ. When the QML estimates of λ are above 0.8, then the majority of the second-stage

estimates of γ even has the wrong sign by falling below zero with a mean at −0.27. Irrespective

of this effect, we obtain very promising results for the second-stage standard errors that correct

for the first-stage estimation error. On average they are reasonably close to the observed standard

deviation.

Increasing the persistence of the data generating process for yit does not produce a clear-cut

picture. For the coefficients of the time-varying regressors we obtain strong reductions both of

the bias and the RMSE.23 To the contrary, the GMM results deteriorate for the coefficient of the

time-invariant regressor when changing λ from 0.4 to 0.8 and improve again when increasing λ to

0.99. We observe a similar non-uniform behavior for the size statistics with increasing values of λ.

The size distortions of the Wald tests for the GMM estimators first become larger when increasing

λ from 0.4 to 0.8 but become smaller again when heightening λ further to 0.99. In particular for the

GMM estimators with the full set of instruments we notice large overrejections as a consequence

of the considerable biases. For the two-stage QML estimator, the bias and RMSE get only slightly

worse with higher persistence of the dependent variable.

In Table 2 we present the simulation results for alternative sample sizes and with the same

parameterization as in Table 1, holding fixed λ = 0.4. The findings are not surprising but a few

observations shall be mentioned. For the GMM estimator with the full set of instruments both the

bias and the RMSE are reduced when we increase the time dimension from 4 to 9 periods, despite

the fact that the instruments count goes up from 33 to 143. When the cross-sectional dimension

becomes large, N = 500, the RMSE turns in favor of the full set of instruments compared to the

collapsed one while the latter is still preferred in terms of bias. Independent of the sample size,

we find again that the two-stage GMM estimator shows a smaller RMSE than the corresponding

one-stage estimator for the coefficient of the time-invariant regressor. For the QML estimator we

22Juodis (2013) provides a technical explanation for this identification problem of the transformed likelihood
estimator in small samples.

23This observation is consistent with the results of Hayakawa (2007).
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can observe that the bimodal feature of the distribution disappears with increasing T or N .

[Table 2 about here.]

We also analyze the performance of the estimators under alternative parameterizations of the

data generating process. Table 3 presents the results for the three situations of a reduction of the

variance σ2
α of the unit-specific effects from 3 to 1, an increase in the persistence parameter φ from

0.4 to 0.8, or an elimination of the correlation between xit and fi by setting ρ = 0, respectively. In

the first case, the RMSE is reduced for all parameters. For the coefficient of the lagged dependent

variable, the GMM estimators now even become superior to the QML estimator. This result

is consistent with previous findings of Binder et al. (2005) and Bun and Windmeijer (2010) that

GMM estimators tend to suffer from weak instruments when the variance of the unit-specific effects

is large. In the second scenario, the higher persistence of xit yields small improvements for the

coefficients of the time-varying regressors. At the same time we observe a sharp deterioration of the

results for the coefficient of the time-invariant regressor. The reason is that the latter now explains

relatively less of the variation in yit due to the larger variance of the regressor xit. Finally, removing

the correlation between the time-varying and the time-invariant regressor leaves the estimates for

λ and β virtually unaffected but has a notably positive effect on the precision of the coefficient γ.

Concerning the comparison of one-stage and two-stage estimators, the results in Table 3 largely

confirm the picture of Table 1. The RMSE of the two-stage estimator is always smaller than that

of the corresponding one-stage estimator for the coefficient of the time-invariant regressor while it

is the other way round for the coefficients of the time-varying regressors.

[Table 3 about here.]

Importantly, irrespective of the simulation design, when we ignore the first-stage estimation

error by assuming Ξv = Ξe in equation (18), we substantially underestimate the second-stage

standard errors. We contrast these estimates in Table 4. For the small sample size with T = 4

and N = 50 the uncorrected standard errors are on average 10 to 32 percent below the actual

standard deviation of the coefficient estimates. Not surprisingly, the underestimation is less severe

in the last simulation design where the exogenous time-varying and the time-invariant regressor

are uncorrelated because this removes asymptotically the influence of the first-stage estimation
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error in the coefficient β on the second-stage estimates. A second noteworthy observation is that

the standard error correction becomes less relevant when the sample size increases, in particular

in the direction of observing more time periods.

[Table 4 about here.]

8 Empirical Application: Distance and FDI

Transportation costs play an important role in theoretical models of bilateral trade and direct

investment determination. Empirically, geographical distance has been used extensively as a proxy

for transportation costs in confronting gravity models with the data.24 A major complication in

the estimation of such gravity equations with panel data is the time-invariant nature of the geo-

graphical distance variable when controlling for unobserved country-specific, industry-specific, or

firm-specific effects. While methods for fixed-effects models wipe out all time-invariant character-

istics, a pure random-effects model may impose exogeneity assumptions that are too strong to be

justifiable. A compromise between the two extremes is the Hausman and Taylor (1981) classifica-

tion of regressors into subgroups of variables that are correlated with the unobserved effects and

those that are not.

Egger and Pfaffermayr (2004a) extend this approach to a seemingly unrelated regressions (SUR)

setup to identify the effects of distance on trade and FDI. The authors estimate a static SUR

model based on bilateral data at the industry level for the United States and Germany, respec-

tively.25 They argue that the geographic distance between two countries is correlated with the

unobserved time-invariant propensity to invest abroad, for example due to decreasing cultural

proximity. Therefore, appropriate instruments need to be deployed. The sum of the real gross

domestic product of both countries (henceforth referred to as bilateral GDP), which is used as a

predictor of outward FDI, is assumed to be correlated with unobserved trade-partner effects. A

measure for the similarity in the country size as well as the factor endowments in physical and

human capital are classified as truly exogenous in the sense of Assumption 2 and could thus serve

24See Egger and Pfaffermayr (2004a) and the references therein.
25The data set is available in the Journal of Applied Econometrics Data Archive. For a variable description, see

Egger and Pfaffermayr (2004a). The data is observed on an annual basis for 341 bilateral industry-level relationships
between 1989 to 1999. The panel is unbalanced with irregular patterns of missing observations.
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as instruments, while that is not the case for relative labor endowment in the FDI equation.26

While the SUR approach yields potential efficiency gains, estimating the model equation by

equation still results in consistent estimates. We focus here on a re-estimation of the FDI model for

the Unites States. In this case, Egger and Pfaffermayr (2004a) find a very large and statistically

significant effect of distance, while for Germany and in the bilateral exports model the effect is either

relatively small or even statistically insignificant. To assess the robustness of their results, we run

a simple specification test for the static model. If there is no serial correlation in the idiosyncratic

error term, the errors from the first-differenced equation should exhibit a serial correlation of -0.5.27

With the data at hand, it is estimated to be -0.113 which is significantly different from -0.5 at

the 1% level. This result has several implications. First, standard errors should be made robust

to serial correlation in a static fixed-effects regression for valid inference. Second, the generalized

least squares (GLS) procedure used by Egger and Pfaffermayr (2004a) to obtain their Hausman

and Taylor (1981) estimates is based on an incorrect estimate of the variance matrix. Third and

most severe, if the serial correlation is a result of a data generating process that includes a lagged

dependent variable, static model estimates potentially yield estimates with sizable biases of short-

run and long-run effects as shown by Egger and Pfaffermayr (2004b).28 Given these arguments,

we re-estimate the FDI equation for the United States in a dynamic setting.

The static model estimates based on the within transformation that removes all time-invariant

components are replicated in the first column of Table 5. The coefficient estimates are identical to

those in the original paper. Yet, we compute standard errors that are robust to heteroscedasticity

and serial correlation. They are much higher compared to the conventional standard errors reported

by Egger and Pfaffermayr (2004a) such that some of the regressors turn statistically insignificant

or significant only at a lower level. The second column is a re-estimation of their single-equation

GLS estimates under the Hausman and Taylor (1981) assumptions. Our coefficient estimates differ

slightly from the original ones due to differences in the variance component estimates. However,

26In the bilateral exports equation, they still treat labor endowments as exogenous based on overidentification tests.
However, to the extent that the unobserved time-invariant effects capture similar country-industry characteristics
in both equations such an asymmetric treatment is disputable.

27See Wooldridge (2002, Chapter 10.6.3) for a description of the test.
28Besides this econometric argumentation in favor of a dynamic model specification, the recent literature on FDI

determinants also motivates dynamic gravity models to cope with the persistence of bilateral FDI. See for example
Kimura and Todo (2010) and Kahouli and Maktouf (2014). Both also employ system GMM estimators but remain
silent on the instruments used to identify the coefficients of the time-invariant regressors.
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the qualitative conclusions are the same.

[Table 5 about here.]

The dynamic model specification estimated with a system GMM estimator supports the as-

sumption of history dependence in the data generating process of the real bilateral stock of outward

FDI. The autoregressive coefficient exceeds 0.8 both with a one-stage and a two-stage estimation

strategy.29 For the two-stage estimator, only 3 out of 56 instruments at the first stage differ from

the one-stage estimator. More specifically, we are using first differences instead of levels of the

variables that are assumed to be uncorrelated with the unobserved effects according to Assump-

tion 2 (similarity in country size, relative physical capital endowment, and relative human capital

endowment) as instruments for the equation in levels because they are partially correlated with

the omitted distance variable. For our main variable of interest, the time-invariant geographical

distance, the point estimates in both cases are very similar while the standard errors under the

two-stage approach are much higher such that the coefficient estimate is no longer statistically

significant.

When testing the validity of the dynamic model and instruments used, we find that the Hansen

(1982) overidentification test based on the one-stage estimates does not provide evidence for mis-

classification. We cannot reject the null hypothesis of joint validity of all instruments. The same

holds for the first-stage estimation of our two-stage estimator. Contrarily, the test based on the

second-stage estimates only rejects the chosen Hausman and Taylor (1981) classification of the

variables.30 The Arellano and Bond (1991) specification test for absence of second-order serial

correlation in the first-differenced residuals is easily passed by both estimators.

To address the potential invalidity of the second-stage instruments, we redo the analysis without

29The one-stage moment conditions are given in Appendix A, disregarding conditions (40) and (41). To avoid
problems of instrument proliferation we only use the second to fourth lag of the dependent variable as instruments in
the first-differenced equation and the lags 0 to 4 for the remaining regressors that are assumed to be strictly exogenous
with respect to the idiosyncratic disturbances. In addition, we collapse the instrument matrices in accordance with
the procedure described in Appendix C. We follow Blundell et al. (2000) to form the initial weighting matrix. For
two-stage GMM estimation we treat all time-varying regressors as potentially correlated with the first-stage effects
α̃i, as explained in Section 4. The second-stage moment conditions are given by equation (14), again applying
the collapsing procedure. At the second stage, we only report results from a one-step estimator without optimal
weighting matrix because the feasible efficient estimator tends to be relatively sensitive when some of the instruments
are weak.

30For its validity, the Hansen (1982) test statistic needs to be based on an optimal weighting matrix. Since we
observed sensitive second-stage coefficient estimates when using an optimal weighting matrix in the presence of weak
instruments, this may also undermine the reliability of the Hansen (1982) test. In the current case, the physical
capital endowment is such an instrument that is only weakly correlated with distance.
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classifying the relative physical capital endowment as an exogenous regressor with respect to the

unobserved effects. Its unconditional correlation with the time-invariant distance variable is only

0.01. It is thus of no use to identify the coefficient of the latter. The results are reported in Table

6. We only observe minor changes in the coefficient estimates but the Hansen (1982) test no longer

rejects the null hypothesis of joint validity of the remaining instruments (similarity in country size

and relative labor endowment, in addition to a constant). Notice in particular that the estimates

for the time-varying regressors with the two-stage estimator are entirely unaffected because the

first-stage moment conditions remain the same as before.

[Table 6 about here.]

The estimation results hint at the appropriateness of a dynamic instead of a static model.

For making the dynamic estimation results comparable with the static estimates, we compute the

long-run marginal effect of distance evaluated at the mean of the relative capital-labor ratio (-0.12

in logarithms). In the dynamic model, the short-run effects are given by the marginal effects

conditional on the lagged dependent variable while long-run effects are obtained by scaling the

short-run effects by the multiplier (1 − λ)−1. Both in Table 5 and 6 we can see that the implied

long-run effect of distance on the real bilateral stock of outward FDI is much smaller in the dynamic

model (and insignificant when using the two-stage estimator).

Finally, the correction of the second-stage standard errors as emphasized in Section 4 proves

to be important. Table 6 reports the uncorrected standard errors in the final column. For the

time-invariant distance variable, it is more than halved without the correction which would signal

erroneously statistical significance even at the 1% level. Similar observations can be made for the

short-run and long-run marginal effects. At the same time, the Hansen (1982) test would reject

the null hypothesis of joint validity of the second-stage instruments at the 10% level if it is based

on an uncorrected and therefore no longer optimal weighting matrix.

Overall, the static model estimates by Egger and Pfaffermayr (2004a) tend to strongly over-

estimate the effect of distance on bilateral FDI due to the ignored persistence of the dependent

variable. Moreover, the results from the dynamic model obtained with system GMM estimators

remain inconclusive whether the effect is even statistically significantly different from zero.
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9 Conclusion

Estimation of linear dynamic panel data models with unobserved unit-specific heterogeneity is

a challenging task when the time dimension is short. The identification of the coefficients of

time-invariant regressors poses additional complications and requires further assumptions on the

orthogonality of the regressors and the unobserved unit-specific effects. These orthogonality as-

sumptions imply additional moment conditions that can be used to form a GMM estimator that

estimates all parameters simultaneously. As an alternative we propose a two-stage estimation

strategy. At the first stage, we subsume the time-invariant regressors under the unit-specific ef-

fects and estimate the coefficients of the time-varying regressors. At the second stage, we regress

the first-stage residuals on the time-invariant regressors. Both time-varying and time-invariant

variables that are assumed to be uncorrelated with the unit-specific effects qualify as instruments

at the second stage. The corresponding overidentifying restrictions can be tested with the usual

specification tests at the second stage.

We can base the first-stage regression on any estimator that consistently estimates the coeffi-

cients of the time-varying regressors without relying on estimates of the coefficients of time-invariant

regressors. In this paper, we discuss GMM-type estimators and a transformed likelihood estimator

as potential first-stage candidates. The latter is entirely based on the model in first differences

and thus necessarily requires the two-stage approach to identify the coefficients of time-invariant

regressors. In general, the two-stage approach is neither restricted to models with a short time

dimension nor to dynamic models. It has two main advantages compared to the estimation of

all parameters at once. First, the estimation of the coefficients of the time-varying regressors is

robust to a model misspecification with regard to the time-invariant variables. Second, the re-

searcher can exploit advantages of first-stage estimators that rely on transformations to eliminate

the unit-specific heterogeneity such as first differences or forward orthogonal deviations.

Our Monte Carlo analysis points out that the two-stage approach works very well in finite

sample but it crucially hinges upon the choice of the first-stage estimator. Suitable candidates

are the QML estimator and GMM estimators that effectively limit the number of overidentifying

restrictions. GMM estimators that are based on the full set of available moment conditions are

shown to suffer from instrument proliferation even at a modest time span. As a consequence, the
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resulting first-stage estimation error translates into poor second-stage estimates.

Importantly, the two-stage approach requires an adjustment of the second-stage standard errors

due to the additional variation that comes from the first-stage estimation error. We provide the

asymptotic variance formula for the second-stage estimator. Our Monte Carlo results demonstrate

that the adjustment works well and is quantitatively important. The relevance of the standard

error correction is also demonstrated in our empirical application.

ECB Working Paper 1838, August 2015 31



References

Ahn, S. C. and P. Schmidt (1995). Efficient estimation of models for dynamic panel data. Journal

of Econometrics 68 (1), 5–27.

Amemiya, T. and T. E. MaCurdy (1986). Instrumental-Variable Estimation of an Error-

Components Model. Econometrica 54 (4), 869–880.

Anderson, T. W. and C. Hsiao (1981). Estimation of Dynamic Models with Error Components.

Journal of the American Statistical Association 76 (375), 598–606.

Andini, C. (2013). How well does a dynamic Mincer equation fit NLSY data? Evidence based on

a simple wage-bargaining model. Empirical Economics 44 (3), 1519–1543.

Arellano, M. (2003). Panel Data Econometrics. Oxford: Oxford University Press.

Arellano, M. and S. R. Bond (1991). Some Tests of Specification for Panel Data: Monte Carlo

Evidence and an Application to Employment Equations. Review of Economic Studies 58 (2),

277–297.

Arellano, M. and O. Bover (1995). Another look at the instrumental variable estimation of error-

components models. Journal of Econometrics 68 (1), 29–51.

Bhargava, A. and J. D. Sargan (1983). Estimating Dynamic Random Effects Models from Panel

Data Covering Short Time Periods. Econometrica 51 (6), 1635–1659.

Binder, M., C. Hsiao, and M. H. Pesaran (2005). Estimation and Inference in Short Panel Vector

Autoregressions With Unit Roots and Cointegration. Econometric Theory 21 (4), 795–837.

Blundell, R. and S. R. Bond (1998). Initial conditions and moment restrictions in dynamic panel

data models. Journal of Econometrics 87 (1), 115–143.

Blundell, R., S. R. Bond, and F. Windmeijer (2000). Estimation in dynamic panel data models: Im-

proving on the performance of the standard GMM estimator. Advances in Econometrics 15 (1),

53–91.

Breusch, T. S., G. E. Mizon, and P. Schmidt (1989). Efficient Estimation Using Panel Data.

Econometrica 57 (3), 695–700.

ECB Working Paper 1838, August 2015 32



Breusch, T. S., M. B. Ward, H. T. M. Nguyen, and T. Kompas (2011). On the Fixed-Effects Vector

Decomposition. Political Analysis 19 (2), 123–134.

Bun, M. J. G. and F. Windmeijer (2010). The weak instrument problem of the system GMM

estimator in dynamic panel data models. Econometrics Journal 13 (1), 95–126.

Chamberlain, G. (1982). Multivariate Regression Models for Panel Data. Journal of Economet-

rics 18 (1), 5–46.

Cinyabuguma, M. M. and L. Putterman (2011). Sub-Saharan Growth Surprises: Being Hetero-

geneous, Inland and Close to the Equator Does not Slow Growth Within Africa. Journal of

African Economies 20 (2), 217–262.

Egger, P. and M. Pfaffermayr (2004a). Distance, trade and FDI: a Hausman-Taylor SUR approach.

Journal of Applied Econometrics 19 (2), 227–246.

Egger, P. and M. Pfaffermayr (2004b). Estimating Long and Short Run Effects in Static Panel

Models. Econometric Reviews 23 (3), 199–214.

Eichenbaum, M. S., L. P. Hansen, and K. J. Singleton (1988). A Time Series Analysis of Represen-

tative Agent Models of Consumption and Leisure Choice under Uncertainty. Quarterly Journal

of Economics 103 (1), 51–78.

Greene, W. H. (2011). Fixed Effects Vector Decomposition: A Magical Solution to the Problem

of Time-Invariant Variables in Fixed Effects Models? Political Analysis 19 (2), 135–146.

Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estimators.

Econometrica 50 (4), 1029–1054.

Hansen, L. P., J. Heaton, and A. Yaron (1996). Finite-Sample Properties of Some Alternative

GMM Estimators. Journal of Business & Economic Statistics 14 (3), 262–280.

Hausman, J. A. and W. E. Taylor (1981). Panel Data and Unobservable Individual Effects. Econo-

metrica 49 (6), 1377–1398.

Hayakawa, K. (2007). Small sample bias properties of the system GMM estimator in dynamic

panel data models. Economics Letters 95 (1), 32–38.

ECB Working Paper 1838, August 2015 33



Hayakawa, K. (2009). On the effect of mean-nonstationarity in dynamic panel data models. Journal

of Econometrics 153 (2), 133–135.

Hayakawa, K. and M. H. Pesaran (2015). Robust standard errors in transformed likelihood esti-

mation of dynamic panel data models. Journal of Econometrics 188 (1), 111–134.

Hoeffler, A. E. (2002). The augmented Solow model and the African growth debate. Oxford Bulletin

of Economics and Statistics 64 (2), 135–158.

Hsiao, C., M. H. Pesaran, and A. K. Tahmiscioglu (2002). Maximum likelihood estimation of fixed

effects dynamic panel data models covering short time periods. Journal of Econometrics 109 (1),

107–150.

Juodis, A. (2013). First difference transformation in panel VAR models: Robustness, estimation

and inference. UvA Econometrics Discussion Paper 2013/06, University of Amsterdam.

Kahouli, B. and S. Maktouf (2014). The determinants of FDI and the impact of the economic crisis

on the implementation of RTAs: A static and dynamic gravity model. International Business

Review , forthcoming.

Kimura, H. and Y. Todo (2010). Is Foreign Aid a Vanguard of Foreign Direct Investment? A

Gravity-Equation Approach. World Development 38 (4), 482–497.

Mehrhoff, J. (2009). A solution to the problem of too many instruments in dynamic panel data

GMM. Discussion Paper, Series 1: Economic Studies 31/2009, Deutsche Bundesbank.

Mundlak, Y. (1978). On the Pooling of Time Series and Cross Section Data. Econometrica 46 (1),

69–85.

Newey, W. K. (1984). A method of moments interpretation of sequential estimators. Economics

Letters 14 (2–3), 201–206.

Newey, W. K. and D. L. McFadden (1994). Large sample estimation and hypothesis testing. In

R. F. Engle and D. L. McFadden (Eds.), Handbook of Econometrics, Volume 4, Chapter 36, pp.

2111–2245. Amsterdam: North-Holland.

Nickell, S. (1981). Biases in Dynamic Models with Fixed Effects. Econometrica 49 (6), 1417–1426.

ECB Working Paper 1838, August 2015 34



Olivero, M. P. and Y. V. Yotov (2012). Dynamic gravity: endogenous country size and asset

accumulation. Canadian Journal of Economics 45 (1), 64–92.
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Appendix

A GMM Moment Conditions

In this appendix, we list the model implied moment conditions for one-stage GMM estimation.

Following Arellano and Bond (1991) and Blundell et al. (2000), Assumption 1 implies the following

T (T − 1)/2 moment conditions for the model in first differences:

E[yi,t−s∆uit] = 0, t = 2, 3, . . . , T, 2 ≤ s ≤ t. (37)

Under strict exogeneity of the variables xit according to Assumption 3 we have another Kx(T +

1)(T − 1) moment conditions:

E[xis∆uit] = 0, t = 2, 3, . . . , T, 0 ≤ s ≤ T. (38)

In the case of predetermined regressors there are only the following Kx(T + 2)(T − 1)/2 moment

conditions available:

E[xi,t−s∆uit] = 0, t = 2, 3, . . . , T, 1 ≤ s ≤ t. (39)

At this stage, we do not need to make a distinction between regressors that are correlated and those

that are uncorrelated with αi. Following Arellano and Bover (1995), the presence of time-invariant

regressors provides another Kf (T − 1) moment conditions:

E[fi∆uit] = 0, t = 2, 3, . . . , T. (40)

When the disturbances uit are homoscedastic through time, Ahn and Schmidt (1995) suggest

another T − 2 moment conditions:

E[yi,t−2∆ui,t−1 − yi,t−1∆uit] = 0, t = 3, . . . , T. (41)

ECB Working Paper 1838, August 2015 36



We can combine these moment conditions for the first-differenced equation:

E[Z′diDei] = 0, (42)

where Zdi = (Zdyi,Zdxi, IT−1 ⊗ f ′i ,Zdui) with

Zdyi =



z′dyi2 0 · · · 0

0 z′dyi3
...

...
. . . 0

0 · · · 0 z′dyiT


, Zdxi =



z′dxi2 0 · · · 0

0 z′dxi3
...

...
. . . 0

0 · · · 0 z′dxiT


,

Zdui =



yi1 0 · · · 0

−yi2 yi2
...

0 −yi,3
. . . 0

...
. . . yi,T−2

0 · · · 0 −yi,T−1


and zdyit = (yi0, yi1, . . . , yi,t−2)′. The instruments zdxit differ according to the assumption about

the regressor variables. We have zdxit = (x′i0,x
′
i1, . . . ,x

′
iT )′ under strict exogeneity, and zdxit =

(x′i0,x
′
i1, . . . ,x

′
i,t−1)′ for predetermined regressors.

For the regressors x1it, Arellano and Bond (1991) introduce the following Kx1(T + 1) level

moment conditions:

E[x1i0ei1] = 0, and E[x1iteit] = 0, t = 1, 2, . . . , T. (43)

Arellano and Bover (1995) further suggest Kf1 moment conditions for the time-invariant regressors

f1i that are uncorrelated with the unit-specific effects αi:

E

[
f1i

T∑
t=1

eit

]
= 0. (44)

To add further moment conditions for the model in levels we need to impose the following assump-

tion:
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Assumption 5: E[∆yi1αi] = 0, and E[∆x2itαi] = 0, t = 1, 2, . . . , T .31

Under the additional Assumption 5, Blundell and Bond (1998) establish the following T − 1

linear moment conditions for the model in levels:

E[∆yi,t−1eit] = 0, t = 2, 3, . . . , T. (45)

Moreover, Arellano and Bover (1995) and Blundell et al. (2000) introduce another Kx2T moment

conditions for the regressors x2it under Assumption 5:

E[∆x2iteit] = 0, t = 1, 2, . . . , T. (46)

All remaining moment conditions for the model in levels are redundant.32 We can now combine

the level moment conditions:

E[Z′liei] = 0, (47)

where Zli = (Zlyi,Zlxi,F1i), with

Zlyi =



0 0 · · · 0

∆yi1 0 · · · 0

0 ∆yi2
...

...
. . . 0

0 · · · 0 ∆yi,T−1


,

31To guarantee that ∆yit and ∆x2it are uncorrelated with αi a restriction on the initial conditions has to be
satisfied. Deviations of yi0 and x2i0 from their long-run means must be uncorrelated with αi. A sufficient but not
necessary condition for Assumption 5 to hold is joint mean stationarity of the processes yit and xit. Moreover,
E[∆yitαi] = 0, t = 2, 3, . . . , T , is implied by Assumption 5. See Blundell and Bond (1998), Blundell et al. (2000),
and Roodman (2009) for a discussion.

32The moment conditions (45) and (46) that result under Assumption 5 do not help identifying γ because it is
unlikely that these instruments are correlated with the time-invariant regressors. Compare Arellano (2003), Chapter
8.5.4.
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and

Zlxi =



x′1i0 x′1i1 0 · · · 0 ∆x′2i1 0 · · · 0

0 0 x′1i2
... 0 ∆x′2i2

...

...
...

. . . 0
...

. . . 0

0 0 · · · 0 x′1iT 0 · · · 0 ∆x′2iT


.

Ahn and Schmidt (1995) derive an additional nonlinear moment condition under homoscedas-

ticity of uit, namely E[ūi∆ui2] = 0. In this paper, we restrict our attention to the linear moment

conditions above.

B Feasible Efficient GMM Estimation

Let Ω = E[eie
′
i|Zi]. Under homoscedasticity, E[u2

it|Zi] = σ2
u and E[α2

i |Zi] = σ2
α, and prior

knowledge of τ = σ2
α/σ

2
u, an optimal weighting matrix is:

VN = N
[
Z′H̃(IN ⊗ Ω̃)H̃′Z

]−1

, (48)

with Ω̃ = τιT ι
′
T + IT such that V = σ2

uΞ−1. When the estimator only involves moment conditions

for the first-differenced equation such that H̃′Z = D̃′Zd, the optimal weighting matrix (48) boils

down to VN = N(Z′dD̃D̃′Zd)
−1 independent of τ since DΩ̃D′ = DD′, as discussed by Arellano

and Bond (1991).

When τ is unknown or homoscedasticity is too strong an assumption, it is common practice to

use a first-step weighting matrix of the following form:

VN = N [Z′(IN ⊗ Ω∗)Z]
−1
, (49)

with different choices for Ω∗. Among others, Arellano and Bover (1995) and Blundell and Bond

(1998) use Ω∗ = I2T−1, while Blundell et al. (2000) take the first-order serial correlation in the

first-differenced residuals into account by choosing

Ω∗ =

DD′ 0

0 IT

 .
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When σ2
α is small, Windmeijer (2000) suggests to use Ω∗ = HH′. In the latter case, the first-

step weighting matrix (49) equals the optimal weighting matrix (48) under τ = 0. A reasonable

alternative is the weighting matrix (48) with an adequate choice (or prior estimate) of τ .

As discussed in Section 3, the second-step weighting matrix is formed as VN = Ξ̂−1. Under

homoscedasticity, an estimate of Ξ can be obtained as Ξ̂ = N−1
∑N
i=1 Z′iHΩ̂H′Zi with an unre-

stricted estimate Ω̂ = N−1
∑N
i=1 êiê

′
i or a restricted estimate Ω̂ = σ̂2

αιT ι
′
T + σ̂2

uIT . The variance

estimates σ̂2
α and σ̂2

u can be obtained as follows:

σ̂2
e =

1

NT − (1 +Kx +Kf )

N∑
i=1

T∑
t=1

ê2
it, (50)

σ̂2
α =

1

NT (T − 1)/2− (1 +Kx +Kf )

N∑
i=1

T−1∑
t=1

T∑
s=t+1

êitêis, (51)

σ̂2
u = σ̂2

e − σ̂2
α. (52)

C Transformations of GMM Instruments

This appendix provides examples of the transformation matrix R that are relevant in practical

applications.33 In the following, we restrict our attention to block-diagonal versions of R:

R =

Rd 0

0 Rl

 ,

such that H′ZiR = (D′ZdiRd,ZliRl). Similarly, we consider a block-diagonal partition of the

transformation matrix for the first-differenced equation:

Rd =


Rdy 0 0

0 Rdx ⊗ IKx 0

0 0 Rdf ⊗ IKf

 ,

conformable for multiplication with the instruments matrix Zdi given in Appendix A. For simplicity,

we disregard the moment conditions (41) that are based on the homoscedasticity of uit.

33Mehrhoff (2009) provides similar transformation matrices for an AR(1) process.
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Often, the instrument count is reduced by restricting the number of lags used to construct the

instrument matrix. This procedure is equivalent to the construction of a transformation matrix Rd

that selects the appropriate columns of the full matrix Zdi. As an example, the following matrices

restrict the lag depth to κ ≥ 1 for both the lagged dependent variable yi,t−1 and strictly exogenous

regressors xit while also discarding future values of the latter:

Rdy =



1 0 0 · · · 0

0 Jκ2 0 · · · 0

0 0 Jκ3

...

...
...

. . . 0

0 0 · · · 0 Jκ,T−1


, Rdx =



J̃κ3 0 0 . . . 0

0 J̃κ4 0 · · · 0

0 0
. . .

...

...
... J̃κT 0

0 0 · · · 0 Jκ,T+1


,

where Jκs = Is if s ≤ κ, and Jκs = (0, Iκ)′ with dimension s× κ if s > κ, and J̃κs = (J′κs,0)′ with

dimension (T + 1)×min{s, κ}. We set Rdf = IT−1 in this case.

Alternatively, the dimension of the instrument matrix can be reduced by collapsing it into

smaller blocks. The following transformation matrices linearly combine the columns of Zdi, again

for the case of strictly exogenous regressors xit:

Rdy =



J∗0,1,T−2

J∗0,2,T−3

...

J∗0,T−2,1

I∗T−1


, Rdx =



J∗0,T+1,T−2

J∗1,T+1,T−3

...

J∗T−3,T+1,1

J∗T−2,T+1,0


,

where J∗s1,s2,s3 = (0s2×s1 , I
∗
s2 ,0s2×s3) with dimension s2×(s1+s2+s3), and I∗s2 is the s2-dimensional

mirror identity matrix with ones on the antidiagonal and zeros elsewhere. ZdyiRdy now corresponds

to the collapsed matrix described by Roodman (2009). As a consequence, the T (T − 1)/2 moment

conditions (37) are replaced by the T − 1 conditions E
[∑T

t=s yi,t−s∆uit

]
= 0, s = 2, 3, . . . , T .

Similarly, the information contained in the Kx(T + 1)(T − 1) moment conditions (38) is condensed

into Kx(2T − 1) conditions. The instrument block containing fi can be collapsed by setting Rdf =

ιT−1. The implied Kf moment conditions are E[fi(uiT − ui1)] = 0 instead of the Kf (T − 1)
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conditions (40). The transformation matrices can be further adjusted to combine the collapsing

approach with the lag depth restriction.

The instruments for the level equation, for clarity ignoring the moment conditions E[x1i0ei1] =

0, can be collapsed into a set of standard instruments by applying the following transformation:

Rl =



ιT−1 0 0 0

0 ιT ⊗ IKx1 0 0

0 0 ιT ⊗ IKx2 0

0 0 0 IKf1


,

such that ZliRl = [(0,∆y′i,(−1))
′,X1i,DX2i,F1i].

D Two-Stage GMM Estimation

Consider a first-stage system GMM estimator θ̂ that satisfies the moment conditions E[Z′iHẽi] = 0

for the first-stage model (10), possibly making use of moment conditions for the level equation.

Compared to one-stage system GMM estimators, this requires an appropriate adjustment of the

instruments Zli that now have to be uncorrelated with α̃i instead of αi. The instruments Zdi for

the transformed model can be left unchanged because Dei = Dẽi. With the notation of Section 5,

we obtain the first-stage estimator θ̂ by adapting equation (23), partialling out the intercept term

ᾱ:

θ̂ = (W∗′MιW
∗)−1W∗′Mιy

∗, (53)

where Mι = IKz − ι∗(ι∗
′ι∗)−1ι∗′ with ι∗ = L′Z′H̃ιNT . From equation (53) we can infer an

expression for the corresponding influence function ψi that is needed to obtain an estimate of Ξθe

at the second stage:

ψi = (W∗′MιW
∗)−1W∗′MιL

′Z′iHẽi, (54)

such that

ˆ̂
Ξθe = (W∗′MιW

∗)−1W∗′MιL
′

(
1

N

N∑
i=1

Z′iHˆ̃eiˆ̂e
′
iZγi

)
, (55)
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where ˆ̃ei = yi−Wiθ̂− ˆ̄αιT . Notice that plimN−1
∑N
i=1 Z′iHẽie

′
iZγi = 0 in the special case where

H = D, the errors are independent and homoscedastic across units and time, and the second-

stage instruments Zγi are time-invariant. Hence, in this particular case Ξθe = 0, and ignoring

the first-stage estimation error results in an underestimation of the standard errors at the second

stage.

E Two-Stage QML Estimation

If Kx2 = Kf2 = 0 we can immediately estimate model (1) with the random effects maximum

likelihood estimator of Bhargava and Sargan (1983) and Hsiao et al. (2002). When this strong

assumption does not hold, Hsiao et al. (2002) propose to estimate the coefficients of the time-

varying regressors based on the first-differenced model:

∆yit = λ∆yi,t−1 + ∆x′itβ + ∆uit, (56)

for the time periods t = 2, 3, . . . , T . However, this procedure not only eliminates the incidental

parameters αi but also the time-invariant variables fi. The latter can be recovered with the two-

stage approach described in Section 4.

Hsiao et al. (2002) derive the joint density of ∆ỹi = (∆yi1,∆yi2, . . . ,∆yiT )′ conditional on

the strictly exogenous variables ∆X̃i = (∆xi1,∆xi2, . . . ,∆xiT )′. Because ∆yi0 is unobserved,

the marginal density of the initial observations ∆yi1 conditional on ∆X̃i cannot be obtained

immediately from model (56). Instead, Hsiao et al. (2002) apply linear projection techniques

to derive the following expression for the initial observations based on an additional stationarity

assumption for the regressors xit:

∆yi1 = b+
T∑
s=1

∆x′isπs + ξi1, (57)

with E[ξi1|∆X̃i] = 0, E[ξ2
i1] = σ2

ξ , E[ξi1∆ui2] = −σ2
u, and E[ξi1∆uit] = 0 for t = 3, 4, . . . , T . The

1 + KxT coefficients π = (b,π′1,π
′
2, . . . ,π

′
T )′ are additional nuisance parameters that need to be

estimated jointly with the parameters of interest. Under homoscedasticity, the variance-covariance
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matrix of ∆ũi = (ξi1,∆ui2, . . . ,∆uiT )′ is given by34

E[∆ũi∆ũ′i] = σ2
uΩ̈ = σ2

u



ω −1 0 · · · 0

−1 2 −1

0 −1 2

...
. . . −1

0 −1 2


,

where ω = σ2
ξ/σ

2
u. The likelihood function can now be set up for the transformed model ∆ỹi =

∆W̃iθ + ∆X̃iπ + ∆ũi, where

∆W̃i =

 0 0

∆yi,(−1) ∆Xi

 , ∆X̃i =

1 ∆x′i1 ∆x′i2 . . . ∆x′iT

0 0 0 . . . 0

 .

Decompose Ω̈−1 = A′B−1A, where A is a T × T lower-triangular and B a diagonal matrix.35

Moreover, let P = IN ⊗ (B−1/2A). The QML estimator for θ is then given by:

θ̂ = (∆W̃′P̂′M̂xP̂∆W̃)−1∆W̃′P̂′M̂xP̂∆ỹ, (58)

where M̂x = INT − P̂∆X̃(∆X̃′P̂′P̂∆X̃)−1∆X̃′P̂′, and P̂ is a function of the variance estimate ω̂.

The variance-covariance matrix of θ̂ is the corresponding partition of the inverse negative Hessian

matrix:

Σθ = (∆W̃′P′MxP∆W̃)−1. (59)

In our Monte Carlos simulations in Section 7 we obtain the estimate ω̂ by maximizing the

concentrated log-likelihood function in terms of ω only, given the analytical first-order conditions

for the remaining parameters. The initial values for the QML optimization are obtained in the

following steps. First, we obtain consistent system GMM estimates of λ and β, and a variance

estimate of σ2
u from the corresponding first-differenced residuals. The nuisance parameters π are

obtained as ordinary least squares estimates from the initial observations equation (57). Second,

34Hayakawa and Pesaran (2015) extend the transformed likelihood estimator to accommodate for heteroscedastic
errors.

35See Hsiao et al. (2002) for details.
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given those estimates we evaluate the first-order condition for the variance parameter ω. Third,

we update the estimates of the other parameters based on their respective optimality conditions

given this estimate of ω. Finally, we repeat the second and third step one more time to obtain a

faster convergence of the subsequent Newton-Raphson algorithm.

The second-stage estimator ˆ̂γ for the coefficients of the time-invariant regressors is given by

equation (16), and the joint asymptotic distribution of the first-stage and second-stage estimators

follows from Proposition 1. Finally, the influence function of the whole parameter vector includ-

ing the ancillary parameters is given by the inverse negative Hessian matrix multiplied by the

score function for unit i. The influence function for the relevant parameter vector θ̂ is then the

corresponding partition.
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Table 1: Simulation results under different parameterization of λ

Coefficient Design Estimator Bias RMSE Size SE/SD

λ λ = .4 1s-sGMM (full) 0.2718 0.1618 0.2250 0.9417
2s-sGMM (full) 0.3046 0.1703 0.2537 0.9439
1s-sGMM (collapsed) -0.0135 0.1432 0.0797 0.9742
2s-sGMM (collapsed) -0.0051 0.1450 0.0870 0.9709
2s-QML 0.0199 0.1247 0.0613 0.8697

λ = .8 1s-sGMM (full) 0.0977 0.0958 0.4320 0.9372
2s-sGMM (full) 0.1036 0.0988 0.4653 0.9432
1s-sGMM (collapsed) 0.0209 0.0796 0.1327 0.9393
2s-sGMM (collapsed) 0.0241 0.0805 0.1383 0.9402
2s-QML 0.0022 0.0708 0.0493 0.9691

λ = .99 1s-sGMM (full) 0.0027 0.0038 0.2763 0.9644
2s-sGMM (full) 0.0029 0.0039 0.2960 0.9760
1s-sGMM (collapsed) 0.0012 0.0036 0.1220 0.9612
2s-sGMM (collapsed) 0.0012 0.0037 0.1307 0.9601
2s-QML 0.0000 0.0037 0.0500 0.9921

β λ = .4 1s-sGMM (full) 0.0555 0.1314 0.0757 1.0076
2s-sGMM (full) 0.0649 0.1328 0.0747 1.0113
1s-sGMM (collapsed) 0.0209 0.1348 0.0627 0.9853
2s-sGMM (collapsed) 0.0232 0.1350 0.0637 0.9891
2s-QML 0.0098 0.1103 0.0537 0.9833

λ = .8 1s-sGMM (full) 0.0310 0.0182 0.0780 1.0240
2s-sGMM (full) 0.0338 0.0183 0.0820 1.0255
1s-sGMM (collapsed) 0.0125 0.0190 0.0697 0.9944
2s-sGMM (collapsed) 0.0142 0.0190 0.0683 1.0001
2s-QML 0.0045 0.0157 0.0520 0.9857

λ = .99 1s-sGMM (full) 0.0010 0.0001 0.0683 1.0106
2s-sGMM (full) 0.0011 0.0001 0.0677 1.0191
1s-sGMM (collapsed) 0.0007 0.0001 0.0677 1.0034
2s-sGMM (collapsed) 0.0008 0.0001 0.0677 1.0082
2s-QML 0.0001 0.0000 0.0540 0.9906

γ λ = .4 1s-sGMM (full) -0.2651 0.5998 0.1403 0.9996
2s-sGMM (full) -0.3061 0.5725 0.1667 1.0134
1s-sGMM (collapsed) -0.0139 0.6655 0.0737 1.0017
2s-sGMM (collapsed) 0.0103 0.6331 0.0713 0.9971
2s-QML -0.0020 0.5987 0.0733 0.9730

λ = .8 1s-sGMM (full) -0.4401 0.6723 0.2763 0.9738
2s-sGMM (full) -0.4754 0.6562 0.3287 0.9865
1s-sGMM (collapsed) -0.1145 0.7109 0.1213 0.9687
2s-sGMM (collapsed) -0.1027 0.6810 0.1223 0.9718
2s-QML 0.0100 0.6820 0.0753 0.9903

λ = .99 1s-sGMM (full) -0.2469 0.6172 0.0873 1.0422
2s-sGMM (full) -0.2812 0.5848 0.0950 1.0457
1s-sGMM (collapsed) -0.1064 0.6643 0.0630 1.0352
2s-sGMM (collapsed) -0.1123 0.6356 0.0613 1.0177
2s-QML 0.0308 0.6926 0.0363 1.0217

Fixed parameters: β = 1− λ, γ = 1, σ2
α = 3, φ = 0.4, ρ = 0.4, T = 4, N = 50.

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators,
respectively. “QML” is the estimator of Hsiao et al. (2002), and “sGMM” refers to feasible efficient system
GMM estimators. We follow Blundell et al. (2000) to form the initial weighting matrix. In parenthesis,
we refer to the set of instruments. The bias is measured relative to the true parameter value. RMSE is
the root mean square error. The size statistic refers to the actual rejection rate of Wald tests that the
parameter estimates equal their true value given a nominal size of 5%. SE/SD is the average standard
error relative to the standard deviation of the estimator for the 3000 replications. GMM standard errors
are based on formula (9) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction.
Second-stage standard errors are based on formula (18).
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Table 2: Simulation results for different sample sizes

Coefficient Design Estimator Bias RMSE Size SE/SD

λ T = 9 1s-sGMM (full) 0.1957 0.1013 0.1877 1.1044
N = 50 2s-sGMM (full) 0.2214 0.1090 0.2533 1.0964

1s-sGMM (collapsed) -0.0232 0.0714 0.0647 1.0088
2s-sGMM (collapsed) -0.0226 0.0712 0.0650 1.0146
2s-QML -0.0034 0.0472 0.0417 1.0245

T = 4 1s-sGMM (full) 0.0215 0.0381 0.0630 0.9721
N = 500 2s-sGMM (full) 0.0241 0.0392 0.0627 0.9694

1s-sGMM (collapsed) 0.0012 0.0430 0.0593 0.9891
2s-sGMM (collapsed) 0.0017 0.0433 0.0583 0.9908
2s-QML 0.0024 0.0334 0.0477 0.9980

T = 9 1s-sGMM (full) 0.0162 0.0189 0.0713 0.9875
N = 500 2s-sGMM (full) 0.0188 0.0197 0.0800 0.9824

1s-sGMM (collapsed) -0.0010 0.0215 0.0547 0.9833
2s-sGMM (collapsed) -0.0007 0.0216 0.0547 0.9824
2s-QML -0.0003 0.0153 0.0527 0.9938

β T = 9 1s-sGMM (full) 0.0252 0.0830 0.0220 1.2300
N = 50 2s-sGMM (full) 0.0323 0.0827 0.0283 1.2122

1s-sGMM (collapsed) 0.0017 0.0801 0.0687 0.9702
2s-sGMM (collapsed) 0.0019 0.0804 0.0677 0.9690
2s-QML -0.0013 0.0613 0.0510 0.9901

T = 4 1s-sGMM (full) 0.0042 0.0355 0.0557 0.9917
N = 500 2s-sGMM (full) 0.0053 0.0357 0.0553 0.9875

1s-sGMM (collapsed) 0.0017 0.0391 0.0563 0.9812
2s-sGMM (collapsed) 0.0020 0.0392 0.0583 0.9797
2s-QML -0.0001 0.0341 0.0527 0.9930

T = 9 1s-sGMM (full) 0.0025 0.0212 0.0510 1.0050
N = 500 2s-sGMM (full) 0.0032 0.0213 0.0533 1.0032

1s-sGMM (collapsed) 0.0002 0.0222 0.0530 1.0045
2s-sGMM (collapsed) 0.0002 0.0222 0.0507 1.0043
2s-QML -0.0003 0.0191 0.0557 1.0045

γ T = 9 1s-sGMM (full) -0.2185 0.5134 0.0820 1.0764
N = 50 2s-sGMM (full) -0.2290 0.4817 0.0907 1.0520

1s-sGMM (collapsed) -0.0413 0.5689 0.0580 1.0107
2s-sGMM (collapsed) 0.0181 0.5358 0.0540 0.9978
2s-QML 0.0026 0.5158 0.0547 0.9861

T = 4 1s-sGMM (full) -0.0281 0.1902 0.0717 0.9693
N = 500 2s-sGMM (full) -0.0313 0.1853 0.0640 0.9929

1s-sGMM (collapsed) -0.0131 0.1961 0.0597 0.9908
2s-sGMM (collapsed) -0.0093 0.1925 0.0567 0.9959
2s-QML -0.0093 0.1803 0.0523 1.0051

T = 9 1s-sGMM (full) -0.0158 0.1759 0.0603 0.9771
N = 500 2s-sGMM (full) -0.0183 0.1636 0.0577 0.9888

1s-sGMM (collapsed) -0.0126 0.1718 0.0557 0.9844
2s-sGMM (collapsed) 0.0012 0.1684 0.0513 0.9838
2s-QML 0.0011 0.1641 0.0463 0.9865

Fixed parameters: λ = 0.4, β = 1− λ, γ = 1, σ2
α = 3, φ = 0.4, ρ = 0.4.

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators,
respectively. “QML” is the estimator of Hsiao et al. (2002), and “sGMM” refers to feasible efficient system
GMM estimators. We follow Blundell et al. (2000) to form the initial weighting matrix. In parenthesis,
we refer to the set of instruments. The bias is measured relative to the true parameter value. RMSE is
the root mean square error. The size statistic refers to the actual rejection rate of Wald tests that the
parameter estimates equal their true value given a nominal size of 5%. SE/SD is the average standard
error relative to the standard deviation of the estimator for the 3000 replications. GMM standard errors
are based on formula (9) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction.
Second-stage standard errors are based on formula (18).
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Table 3: Simulation results under alternative scenarios

Coefficient Design Estimator Bias RMSE Size SE/SD

λ σ2
α = 1 1s-sGMM (full) 0.0679 0.1088 0.0837 0.9971
φ = .4 2s-sGMM (full) 0.1132 0.1151 0.1070 0.9987
ρ = .4 1s-sGMM (collapsed) -0.0312 0.1249 0.0730 0.9902

2s-sGMM (collapsed) -0.0216 0.1271 0.0763 0.9887
2s-QML 0.0199 0.1245 0.0613 0.8706

σ2
α = 3 1s-sGMM (full) 0.2322 0.1410 0.2170 0.9532
φ = .8 2s-sGMM (full) 0.2553 0.1465 0.2450 0.9486
ρ = .4 1s-sGMM (collapsed) 0.0024 0.1339 0.0813 0.9707

2s-sGMM (collapsed) 0.0109 0.1355 0.0893 0.9682
2s-QML 0.0110 0.1196 0.0613 0.8547

σ2
α = 3 1s-sGMM (full) 0.2729 0.1617 0.2293 0.9422
φ = .4 2s-sGMM (full) 0.2988 0.1693 0.2463 0.9442
ρ = 0 1s-sGMM (collapsed) -0.0127 0.1438 0.0803 0.9723

2s-sGMM (collapsed) -0.0060 0.1454 0.0850 0.9711
2s-QML 0.0198 0.1244 0.0613 0.8718

β σ2
α = 1 1s-sGMM (full) 0.0358 0.1226 0.0693 0.9926
φ = .4 2s-sGMM (full) 0.0489 0.1243 0.0743 0.9990
ρ = .4 1s-sGMM (collapsed) 0.0196 0.1307 0.0673 0.9778

2s-sGMM (collapsed) 0.0224 0.1315 0.0680 0.9798
2s-QML 0.0098 0.1103 0.0537 0.9833

σ2
α = 3 1s-sGMM (full) 0.0499 0.1265 0.0747 0.9926
φ = .8 2s-sGMM (full) 0.0602 0.1277 0.0793 0.9943
ρ = .4 1s-sGMM (collapsed) 0.0327 0.1372 0.0667 0.9840

2s-sGMM (collapsed) 0.0364 0.1375 0.0677 0.9871
2s-QML 0.0056 0.1087 0.0527 0.9851

σ2
α = 3 1s-sGMM (full) 0.0577 0.1316 0.0757 1.0072
φ = .4 2s-sGMM (full) 0.0578 0.1320 0.0743 1.0085
ρ = 0 1s-sGMM (collapsed) 0.0215 0.1347 0.0677 0.9866

2s-sGMM (collapsed) 0.0222 0.1348 0.0653 0.9900
2s-QML 0.0098 0.1103 0.0537 0.9832

γ σ2
α = 1 1s-sGMM (full) -0.0714 0.4281 0.0800 1.0191
φ = .4 2s-sGMM (full) -0.1234 0.3978 0.0890 1.0342
ρ = .4 1s-sGMM (collapsed) 0.0062 0.4704 0.0727 1.0112

2s-sGMM (collapsed) 0.0182 0.4528 0.0637 1.0028
2s-QML -0.0122 0.4451 0.0703 0.9505

σ2
α = 3 1s-sGMM (full) -0.3876 0.7137 0.1590 1.0185
φ = .8 2s-sGMM (full) -0.4444 0.6973 0.2010 1.0352
ρ = .4 1s-sGMM (collapsed) -0.0590 0.7748 0.0793 1.0010

2s-sGMM (collapsed) -0.0512 0.7450 0.0753 1.0105
2s-QML -0.0015 0.6949 0.0710 0.9717

σ2
α = 3 1s-sGMM (full) -0.1712 0.5224 0.1020 1.0046
φ = .4 2s-sGMM (full) -0.1947 0.4856 0.1247 1.0112
ρ = 0 1s-sGMM (collapsed) -0.0054 0.6154 0.0643 1.0035

2s-sGMM (collapsed) 0.0192 0.5777 0.0593 0.9982
2s-QML 0.0073 0.5545 0.0633 0.9854

Fixed parameters: λ = 0.4, β = 1− λ, γ = 1, T = 4, N = 50.
Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators,
respectively. “QML” is the estimator of Hsiao et al. (2002), and “sGMM” refers to feasible efficient system
GMM estimators. We follow Blundell et al. (2000) to form the initial weighting matrix. In parenthesis,
we refer to the set of instruments. The bias is measured relative to the true parameter value. RMSE is
the root mean square error. The size statistic refers to the actual rejection rate of Wald tests that the
parameter estimates equal their true value given a nominal size of 5%. SE/SD is the average standard
error relative to the standard deviation of the estimator for the 3000 replications. GMM standard errors
are based on formula (9) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction.
Second-stage standard errors are based on formula (18).
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Table 4: Corrected versus uncorrected second-stage standard errors

Coefficient Design Estimator Corrected SE/SD Uncorrected SE/SD

γ λ = 0.4 σ2
α = 3 2s-sGMM (full) 1.0134 0.8080

φ = 0.4 ρ = 0.4 2s-sGMM (collapsed) 0.9971 0.7975
T = 4 N = 50 2s-QML 0.9730 0.8325
λ = 0.8 σ2

α = 3 2s-sGMM (full) 0.9865 0.7094
φ = 0.4 ρ = 0.4 2s-sGMM (collapsed) 0.9718 0.6899
T = 4 N = 50 2s-QML 0.9903 0.7463
λ = 0.99 σ2

α = 3 2s-sGMM (full) 1.0457 0.8495
φ = 0.4 ρ = 0.4 2s-sGMM (collapsed) 1.0177 0.7914
T = 4 N = 50 2s-QML 1.0217 0.7959

γ λ = 0.4 σ2
α = 3 2s-sGMM (full) 1.0520 0.9598

φ = 0.4 ρ = 0.4 2s-sGMM (collapsed) 0.9978 0.9320
T = 9 N = 50 2s-QML 0.9861 0.9542
λ = 0.4 σ2

α = 3 2s-sGMM (full) 0.9929 0.8661
φ = 0.4 ρ = 0.4 2s-sGMM (collapsed) 0.9959 0.8367
T = 4 N = 500 2s-QML 1.0051 0.8932
λ = 0.4 σ2

α = 3 2s-sGMM (full) 0.9888 0.9549
φ = 0.4 ρ = 0.4 2s-sGMM (collapsed) 0.9838 0.9358
T = 9 N = 500 2s-QML 0.9865 0.9601

γ λ = 0.4 σ2
α = 1 2s-sGMM (full) 1.0520 0.7557

φ = 0.4 ρ = 0.4 2s-sGMM (collapsed) 0.9978 0.7046
T = 4 N = 50 2s-QML 0.9861 0.7012
λ = 0.4 σ2

α = 3 2s-sGMM (full) 0.9929 0.7411
φ = 0.8 ρ = 0.4 2s-sGMM (collapsed) 0.9959 0.6801
T = 4 N = 50 2s-QML 1.0051 0.7355
λ = 0.4 σ2

α = 3 2s-sGMM (full) 0.9888 0.8820
φ = 0.4 ρ = 0 2s-sGMM (collapsed) 0.9838 0.8753
T = 4 N = 50 2s-QML 0.9865 0.8994

Note: See notes to Tables 1 to 3 for a description of the estimators. We report the average standard
error relative to its standard deviation for the 3000 replications. Corrected second-stage standard errors
are based on formula (18), while uncorrected standard errors ignore the first-stage estimation error.
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Table 5: Estimation results: dynamic gravity model (original instruments)

ln(outward FDI)it Within HT-GLS 1s-sGMM 2s-sGMM

ln(outward FDI)i,t−1 0.853 0.886
(0.063)*** (0.064)***

ln(distance)i 15.434 0.920 0.888
(2.575)*** (0.449)** (0.552)

ln(distance)i × -1.759 -1.744 -0.738 -0.113
ln(relative capital-labor ratio)it (0.880)** (0.600)*** (0.320)** (0.154)

ln(bilateral GDP)it 5.193 5.653 0.782 1.537
(0.956)*** (0.828)*** (0.562) (0.747)**

ln(bilateral GDP)it × 0.026 0.022 -0.009 -0.006
| ln(relative physical capital endowment)it| (0.017) (0.011)* (0.008) (0.008)

ln(similarity in country size)it 1.607 1.762 -0.080 0.581
(0.629)** (0.355)*** (0.264) (0.254)**

ln(relative physical capital endowment)it 14.730 14.761 6.499 1.609
(7.694)* (5.203)*** (2.769)** (1.493)

ln(relative human capital endowment)it 0.278 0.276 0.001 -0.054
(0.207) (0.148)* (0.136) (0.133)

ln(relative labor endowment)it -12.897 -12.615 -6.281 -0.805
(7.494)* (5.289)** (2.724)** (1.352)

Constant -281.250 -28.082 -47.994
(38.170)*** (15.672)* (16.600)***

Year dummies 1990–1999 1990–1999 1991–1999 1991–1999
Observations 2,767 2,767 2,198 2,198
Units 341 341 337 337
1st stage
Instruments 56 56
Arellano-Bond z = -0.01 z = -0.01

(0.989) (0.995)
Hansen χ2

37 = 36.85 χ2
38 = 39.91

(0.476) (0.385)
2nd stage
Instruments 4
Hansen χ2

2 = 17.17
(0.000)***

Short-run marginal effect of ln(distance)i 1.010 0.901
evaluated at the variable mean (0.465)** (0.554)

Long-run marginal effect of ln(distance)i 15.646 6.888 7.931
evaluated at the variable mean (2.581)*** (3.741)* (6.720)

* p < 0.1; ** p < 0.05; *** p < 0.01
Note: See Egger and Pfaffermayr (2004a) for a data description. We abbreviate the estimators as follows:
“Within” denotes the least squares dummy variables estimator, and “HT-GLS” refers to the Hausman
and Taylor (1981) generalized least squares estimator. “1s” and “2s” denote one-stage and two-stage
estimators, respectively, and “sGMM” refers to system GMM estimators. We follow Blundell et al. (2000)
to form the initial weighting matrix for feasible efficient estimation with “1s-sGMM” and the first stage of
“2s-sGMM”. We collapse the instrument matrices and for the equation in first differences we use the lags
2 to 4 of the dependent variable and the lags 0 to 4 of all other time-varying regressors as instruments.
GMM standard errors are based on formula (9) with an unrestricted estimate of Ξ and the Windmeijer
(2005) correction. Second-stage standard errors are based on formula (18). The standard errors are
reported in parenthesis. All regressions include time dummies. The exogenous variables according to
Assumption 2 are the similarity in country size, the relative physical capital endowment, and the relative
human capital endowment. “Arellano-Bond” refers to the Arellano and Bond (1991) test for second-
order serial correlation in the first-differenced residuals, and “Hansen” to the Hansen (1982) test of the
overidentifying restrictions, with the p-values in parenthesis.
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Table 6: Estimation results: dynamic gravity model (adjusted instruments)

ln(outward FDI)it HT-GLS 1s-sGMM 2s-sGMM (uncorrected)

ln(outward FDI)i,t−1 0.834 0.886
(0.061)*** (0.064)***

ln(distance)i 15.064 0.807 0.925
(3.461)*** (0.376)** (0.565) (0.225)***

ln(distance)i × -1.724 -0.690 -0.113
ln(relative capital-labor ratio)it (0.616)*** (0.291)** (0.154)

ln(bilateral GDP)it 5.658 0.991 1.537
(0.865)*** (0.631) (0.747)**

ln(bilateral GDP)it × 0.022 -0.009 -0.006
| ln(relative physical capital endowment)it| (0.012)* (0.008) (0.008)

ln(similarity in country size)it 1.728 0.069 0.581
(0.415)*** (0.294) (0.254)**

ln(relative physical capital endowment)it 14.578 6.159 1.609
(5.368)*** (2.486)** (1.493)

ln(relative human capital endowment)it 0.277 0.025 -0.054
(0.150)* (0.138) (0.133)

ln(relative labor endowment)it -12.506 -5.802 -0.805
(5.379)** (2.502)** (1.352)

Constant -278.178 -32.544 -52.104
(46.223)*** (16.714)* (31.223)*

Year dummies 1990–1999 1991–1999 1991–1999
Observations 2,767 2,198 2,198
Units 341 337 337
1st stage
Instruments 56 56
Arellano-Bond z = -0.00 z = -0.01

(0.999) (0.995)
Hansen χ2

37 = 36.79 χ2
38 = 39.91

(0.479) (0.385)
2nd stage
Instruments 3
Hansen χ2

1 = 0.59 χ2
1 = 2.94

(0.444) (0.087)*
Short-run marginal effect of ln(distance)i 0.891 0.939
evaluated at the variable mean (0.405)** (0.567)* (0.225)***

Long-run marginal effect of ln(distance)i 15.274 5.380 8.259
evaluated at the variable mean (3.473)*** (2.698)** (6.948) (4.970)*

* p < 0.1; ** p < 0.05; *** p < 0.01
Note: See Egger and Pfaffermayr (2004a) for a data description. We abbreviate the estimators as follows:
“Within” denotes the least squares dummy variables estimator, and “HT-GLS” refers to the Hausman
and Taylor (1981) generalized least squares estimator. “1s” and “2s” denote one-stage and two-stage
estimators, respectively, and “sGMM” refers to system GMM estimators. We follow Blundell et al.
(2000) to form the initial weighting matrix for feasible efficient estimation with “1s-sGMM” and the first
stage of “2s-sGMM”. We collapse the instrument matrices and for the equation in first differences we
use the lags 2 to 4 of the dependent variable and the lags 0 to 4 of all other time-varying regressors as
instruments. GMM standard errors are based on formula (9) with an unrestricted estimate of Ξ and the
Windmeijer (2005) correction. Second-stage standard errors are based on formula (18). The standard
errors are reported in parenthesis. All regressions include time dummies. The exogenous variables
according to Assumption 2 are the similarity in country size and the relative human capital endowment.
“Arellano-Bond” refers to the Arellano and Bond (1991) test for second-order serial correlation in the
first-differenced residuals, and “Hansen” to the Hansen (1982) test of the overidentifying restrictions,
with the p-values in parenthesis. The final column reports standard errors and test statistics for the
“2s-sGMM” estimator based on uncorrected second-stage standard errors that do not take the first-stage
estimation error into account. Coefficient estimates are unaffected.
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