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Abstract

We characterize optimal monetary policy under state-dependent pricing. The
framework gives rise to nonlinear inflation dynamics: The flexibility of the price
level increases after large shocks due to an endogenous rise in the frequency of
price changes. In response to large cost-push shocks, optimal policy leverages the
lower sacrifice ratio to curb inflation. When faced with total factor productivity
shocks, an efficient disturbance, the optimal policy commits to strict price stability.
The optimal long-run inflation rate is just above zero.

JEL codes: E31, E32, E52

Keywords: State-dependent pricing, large shocks, nonlinear Phillips curve, optimal
monetary policy
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Non-Technical Summary

Recent global economic developments, particularly the surge in inflation following
the COVID-19 pandemic, have presented significant challenges for central banks.
Traditional models of inflation, which assume a linear and stable relationship between
inflation and economic activity, have struggled to explain these developments. This
paper addresses a key question: How should central banks adjust their monetary
policies when the relationship between inflation and economic output becomes more
complex, particularly during periods of large economic shocks?

The paper argues that in periods of significant economic shocks – such as sudden
increases in costs – firms tend to change their prices more frequently. This behavior
leads to what is known as a “nonlinear Phillips curve,” where inflation becomes more
sensitive to changes in economic output. The central finding is that, in such scenarios,
the costs of reducing inflation through tighter monetary policy are lower than pre-
viously thought because the economy adjusts more quickly when prices are already
changing frequently.

The paper also demonstrates that in response to productivity shocks, the best policy
is for central banks to maintain stable prices. This finding aligns with traditional mod-
els and supports the idea that price stability should remain a core focus of monetary
policy during these types of shocks.

The research uses a theoretical model that incorporates state-dependent pric-
ing—where firms’ decisions to adjust prices depend on the economic environment.
The model is calibrated using data from the United States. By comparing this model to
a traditional linear model, the authors are able to highlight the differences in optimal
policy responses under different economic conditions.

The findings have important implications for central banks. During periods of high
inflation, where firms frequently adjust their prices, central banks might consider a
more aggressive stance against inflation. This is because the economic cost of such
policies – measured in terms of reduced output or increased unemployment – may be
lower than in periods of stable prices. During productivity shocks, maintaining price
stability should also remain the priority.

In conclusion, this paper provides new insights into how central banks can opti-
mize their monetary policy in a world where the relationship between inflation and
economic activity is not straightforward. By recognizing when firms are likely to ad-
just prices more frequently, central banks can better tailor their policies to minimize
economic disruptions and maintain stable inflation.
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1. Introduction

What is the optimal design of monetary policy? The traditional answer offered by
the New Keynesian literature relies on the price setting model by Calvo (1983), which
disregards endogenous variation in the frequency of price changes: firms update prices
at random times irrespective of macroeconomic conditions.1 In contrast, a rapidly
growing literature on state-dependent price setting, sometimes referred to as “menu
cost models”, recognizes that firms decide when to adjust prices endogenously, taking
into account monetary policy. High inflation periods, such as the recent inflation
surge episode, have forcefully illustrated that the frequency of price changes is indeed
responsive to macroeconomic conditions: in the U.S., it more than doubled at the
2022 inflation peak.2 Yet, the normative aspects of these state-dependent models
have received limited attention. To bridge this important gap, our paper characterizes
optimal monetary policy under commitment in the canonical menu cost model of
Golosov and Lucas (2007) and shows robustness in the CalvoPlus model of Nakamura
and Steinsson (2010).

Our analysis arrives at a novel insight: optimal policy leans against inflation dis-
proportionately strongly in response to large cost-push shocks, which exert upward
pressure on the repricing frequency – a “strike while the iron is hot” policy. The rea-
sons are twofold. First, the cost of the anti-inflationary policy in terms of output is
smaller when the frequency of price changes increases in response to the shocks – as
the price level becomes more flexible, the sacrifice ratio falls. Second, as we explain
below, in our state-dependent framework the relative importance of inflation versus
output in the central bank’s objective stays close to that in the Calvo model. At the
same time, as we show analytically, optimal policy requires full inflation stabilization
after total factor productivity shocks – a version of the “divine coincidence” result after
efficiency shocks, as in the canonical Calvo model.

Our baseline state-dependent price settingmodel closely follows the seminal paper
of Golosov and Lucas (2007). In the model, a representative household consumes a
continuum of differentiated goods and supplies labor in a centralized, frictionless
market. Each consumption good is produced by a single firm with labor as the only
input. Production technology is subject to aggregate productivity and cost-push shocks,
and idiosyncratic quality shocks.3 Firms must incur a small, fixed “menu cost” to
adjust their prices. Thus, firms’ pricing decisions are characterized by an (S, s) rule:
When prices are within an endogenous band around the optimal reset price, firms
keep them constant; otherwise, they pay the menu cost and update their price. The
central bank sets the nominal interest rate.

1Woodford (2003); Galí (2008)
2See Montag and Villar (2023). The empirical relationship between inflation and frequency has been

well established both in the U.S. and on other countries. The literature review below lists references.
3We depart from the Golosov and Lucas (2007) model in this regard, which, instead of idiosyncratic

quality shocks, assumes productivity shocks. This facilitates the computation, while its implications are
innocuous (see also Midrigan 2011; Alvarez et al. 2021).
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We study the optimal design of monetary policy in this model. To this end, we
propose a new algorithm to solve the Ramsey problem nonlinearly, so that it is suitable
for assessing the impact of large aggregate shocks. In particular, we approximate the
value and distribution functions over the endogenously determined relevant range and
solve the set of equilibrium conditions under perfect foresight over the sequence space.
We calibrate the model parameters to match the monthly frequency of price changes
in the U.S. before the inflation surge4, as well as a 20% frequency level accompanying
a 10% inflation rate as experienced during the inflation surge of 2022-2023 (Montag
and Villar 2023). We contrast the implications of our state-dependent model with those
of a time-dependent Calvo model.5

The model economy is subject to three welfare-relevant distortions. The first two
are caused by actual markups deviating from the efficient markup: the first distortion
is caused by the averagemarkup, and the second by the dispersion of markups. The
third distortion is the resource costs related to price adjustment. The distortion caused
by average markup is conventional and is present both in our baseline model and in
the canonical Calvo model.6 It incentivizes the central bank to minimize the variation,
caused by aggregate shocks, in the average markup, which it can affect due to price
rigidities. The behavior of the second and third distortions is distinct in the two frame-
works. In our framework, aggregate shocks can reduce markup dispersion on impact,
as new adjusters are selected from those with the most misaligned markups; while
aggregate shocks increase markup dispersion in the Calvo framework. Furthermore,
resource costs of price changes become a relevant factor in our framework, while they
are always zero in the Calvo framework by construction. The policymaker’s task is to
minimize the effect of those distortions.

We find that optimal monetary policy should lean more aggressively against infla-
tion after large cost-push shocks when the frequency of price changes is endogenously
high than either after a small shock or in a fixed-frequency Calvo setting: it is optimal
to “strike while the iron is hot”.7 This nonlinearity establishes a key difference between
our model and the standard Calvo model. Our calibration implies that this new policy
prescription is relevant for the 2022-2023 inflation surge: Already for inflation and fre-
quency values of the magnitude observed during this period, optimal policy requires a
significantly more aggressive anti-inflationary stance than for a small shock or under
Calvo pricing.

What explains the modified policy prescription? To gain insight into this result,
we introduce a simplified model. In the simplified model, we introduce a sub-period

4See, for example, Nakamura and Steinsson (2008).
5The Calvo model is recalibrated to generate the same price-flexibility as our baseline model for small

shocks (Auclert et al. 2024). This recalibration compensates for the endogenous “selection” of large price
changes, which substantially raises the flexibility of the aggregate price level.

6As is standard in optimal monetary policy analysis, we offset steady-state average markup distortion
due to the market power with suitable subsidies. We reintroduce steady-state markup distortions only to
analyze the impact of time-inconsistency.

7We analyze timeless Ramsey policy á la Woodford (2003).
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of night, when only the firms are awake, and when the prices are fully flexible. The
assumption improves the tractability of the model by turning the dynamic problem
of the firms into a series of static problems, but it keeps the key underlying channel
active: the repricing rate responds endogenously to aggregate shocks.

In the simplifiedmodel, both welfare and the planner’s choice set can be expressed
in the space of (i) the output gap, which measures the distance between output and its
efficient level, and (ii) inflation, as is conventional in optimal monetary policy analysis
under the Calvo price setting. Welfare depends on these two variables because the
output gap is related to the average markup, and inflation is related to the markup
dispersion and the resource costs of price changes. The choice set can also be expressed
in the space of inflation and output gap – and takes the form of a nonlinear Phillips
curve. It is nonlinear because inflation becomes more sensitive to changes in the
output gap as large shocks raise the frequency of price changes and, thereby, increase
price flexibility.8

Optimal policy leans more aggressively against inflation after large cost-push
shocks than after small shocks in the simplified model, just as in the full model. In the
simplified model, the relationship between the output gap and inflation under optimal
policy can be illustrated by a structural “target rule.” The optimal “strike while the iron
is hot” policy translates into a nonlinear target rule: larger output gaps are associated
with relatively lower inflation rates than smaller output gaps. This is in stark contrast
to the corresponding target rule in the Calvo framework, which is almost linear.

To understand the key driving forces behind this policy prescription, it is instructive
to start with the question of why the target rule is almost linear in the Calvo model.
There, welfare can be well approximated by a quadratic function of the output gap and
inflation with a fixed weight9, while the Phillips curve is almost linear. Optimal policy
thus maximizes a near-quadratic objective subject to the near-linear Phillips curve.
The resulting policy is thus near linear.

Why is the same relationship between inflation and output gap nonlinear under
state-dependent pricing?We find that this is almost exclusively driven by the nonlinear
trade-off between inflation and output gap – the nonlinear Phillips curve. Intuitively,
reducing inflation in this framework is cheaper after large shocks, when the frequency
is higher and the price level is more flexible, that is, when the sacrifice ratio is low.
To show that this is the dominant driving force, we combine the nonlinear Phillips
curve of our simplified framework with a counterfactual quadratic welfare function
approximating the Calvo model and derive a counterfactual target rule. We show that
the ensuing target rule is close to the true target rule and is similarly characterized
by the “strike while the iron is hot” policy. As the relative welfare weight of inflation

8Other papers point to complementary reasons why the Phillips curve can be nonlinear, such as
state-dependent wage rigidity (Benigno and Eggertsson 2023) or Kimball aggregators (Erceg et al. 2024).

9Woodford (2003) shows that welfare can be approximated by a weighted sum of squares of output gap
and inflation, the weight being determined by structural parameters of the model. This approximation
applies in the neighborhood of an efficient steady state up to a second order, i.e. for small shocks. We
find that this approximation works well numerically also for large shocks.
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and output gap is independent of the shock in this counterfactual by construction,
the results here are clearly driven by the shape of the Phillips curve – the nonlinear
sacrifice ratio.10 This result generalizes to the full model. Therefore, we conclude that
the key driving force behind the aggressive anti-inflationary stance after large shocks
is the lower sacrifice ratio.

We establish a series of additional results in the full model. First, we show that
the model features a slightly positive Ramsey optimal steady-state inflation rate, at
around 0.07% per annum. This contrasts with the standard Calvomodel, where optimal
inflation is exactly zero. In our menu cost model, slightly positive steady state inflation
reduces the frequency and thus helps firms to economize on costly price adjustments.
In particular, it counterbalances the impact of too frequent price increases relative to
price decreases, which is a consequence of the asymmetry of the profit function: firms
dislike more negative price misalignments when the demand for their product is high,
relative to positive misalignments when the demand is low. Second, we also find that
for small cost-push shocks, optimal policy “leans against the wind”: the central bank
temporarily drives output below its efficient level to contain the inflationary impact
of a positive cost-push shock. This is very similar, though not identical, to the Calvo
model. However, the reason is different. In the Calvo model, the key distortion caused
by inflation is the markup dispersion, while in our baseline model it is the resource
costs due to menu costs. Third, we show analytically that the optimal response to
TFP shocks is characterized by the “divine coincidence” (Blanchard and Galí 2007). In
other words, optimal policy stabilizes both inflation and the output gap. Finally, we
show that the well-known time inconsistency problem of optimal monetary policy is
also present in our menu cost model, although it is attenuated relative to Calvo. In
both models, when the steady state is inefficient, monetary policy has the incentive to
stimulate output via an unexpectedly easy policy (Galí 2008). However, in the menu
cost model, such a policy is less effective on output and more inflationary because the
ensuing increase in the repricing rate raises the flexibility of the aggregate price level.
The time-inconsistent motive to ease is thus considerably weaker.

Our results are robust to alternative parameterizations, and also hold in the “Calvo-
Plus” model (Nakamura and Steinsson 2010). The latter framework assumes that the
price adjustment cost is stochastic: it takes a positive value with some exogenous
probability, and it is zero otherwise. This model can better match the fraction of small
price changes in the data (see alsoMidrigan 2011; Alvarez et al. 2021), and can achieve a
realistic degree of monetary non-neutrality for small shocks. However, as we show, the
model also prescribes a more aggressive anti-inflationary stance after large cost-push
shocks than after small shocks, with an even higher nonlinearity than our baseline.
This is primarily because the sacrifice ratio exhibits even more nonlinearity in this
framework than in our baseline.

10The deviation of the true welfare from the quadratic approximation actually somewhatmitigates the
nonlinearity of the true target rule, but its impact is quantitatively small.
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Related literature. Our paper builds on the seminal article by Golosov and Lucas (2007).
They propose amenu costmodel (Barro 1972; Sheshinski andWeiss 1977; Caballero and
Engel 1993) that provides amicro-founded state-dependent alternative to the canonical
time-dependent Calvo (1983) model. The framework has become the backbone of a
positive literature (Gertler and Leahy 2008; Midrigan 2011; Costain and Nakov 2011;
Alvarez et al. 2016; Auclert et al. 2024)11 and is shown to describe firms’ price-setting
behavior well in diverse environments with both low and high inflation (Nakamura
and Steinsson 2008; Gagnon 2009; Alvarez et al. 2019; Nakamura et al. 2018), and as
response to large aggregate shocks (Karadi and Reiff 2019; Alexandrov 2020; Auer et al.
2021).

To the best of our knowledge, our paper is the first to solve for optimal monetary
policy in this canonical menu cost model. Its main distinctive feature is the endo-
geneity of the extent of price stickiness: the frequency of price changes can vary
with macroeconomic conditions and thus it is endogenous to shocks and potentially
to monetary policy itself. This is different from the canonical textbook analysis of
optimal monetary policy based on Calvo (1983), such as in Woodford (2003) and Galí
(2008). Changes in frequency have been documented both after large aggregate shocks
(Karadi and Reiff 2019; Alvarez and Neumeyer 2020; Auer et al. 2021; Gagliardone
et al. 2025; Gautier et al. 2025), and in high-inflation environments (Gagnon 2009;
Alvarez et al. 2019; Nakamura and Steinsson 2018), and have received new empirical
support following the recent U.S. inflation surge (Montag and Villar 2023; Cavallo et al.
2024; Blanco et al. 2024a). Variation in frequency implies a state-dependent, nonlinear
relationship between inflation and the output gap (Vavra 2014; Blanco et al. 2024b).
Our conclusion prescribing an aggressive anti-inflationary policy after large shocks is
a direct consequence of this nonlinearity, which implies a favorable inflation-output
trade-off that optimal policy should exploit.

Solving dynamic optimal policy in response to aggregate shocks in this framework
complements previous research on optimal monetary policy, which has restricted its
attention to menu cost settings with a representative firm and small aggregate shocks
(Nakov and Thomas 2014), sector-specific productivity shocks (Caratelli and Halperin
2023) or to optimal steady-state inflation (Adam andWeber 2019; Blanco 2021; Nakov
and Thomas 2014).12

This paper proposes a new algorithm to solve Ramsey optimal policy in
heterogeneous-agent models, building on González et al. (2024). The algorithm (i)
makes the infinite-dimensional planner’s problem finite-dimensional by approximat-

11A key question of the literature is the relationship between monetary non-neutrality and the distri-
bution of price changes at the micro level. This is not the focus of our paper. We show that our results
on optimal monetary policy after large shocks are robust across models with very different implica-
tions about monetary non-neutrality, like the Golosov and Lucas (2007) model on the one hand and the
CalvoPlus model of Nakamura and Steinsson (2010) on the other.

12Nakov and Thomas (2014) find no significant difference between Calvo and a random menu cost
model. Caratelli and Halperin (2023) show that, in the face of sector-specific shocks, optimal policy can
be characterized as nominal wage targeting.
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ing the infinite-dimensional value and distribution functions by piece-wise linear
functions on a grid; (ii) accounts for the discrete price-adjustment choice using
an endogenous grid; (iii) derives the FOCs of the planner’s problem by symbolic
differentiation; and (iv) solves the resulting set of equilibrium conditions nonlinearly
under perfect foresight over the sequence space. Our approach complements other
methods to solve for Ramsey policy in heterogeneous-agent models (Bhandari et al.
2021; Le Grand et al. 2022; Dávila and Schaab 2022; Nuño and Thomas 2022; Smirnov
2022).

2. Model

In the baseline economy a representative household consumes a basket of differenti-
ated goods and supplies labor; monopolistic firms produce using a technology that is
affected by both aggregate and idiosyncratic shocks and must pay a fixed menu cost
to change prices; and a central bank sets interest rates. Time is discrete and there
is no aggregate uncertainty. We compare our baseline economy to a Calvo economy,
which is identical to our baseline except firms adjust their prices with an exogenous
probability.

2.1. Households

A representative household consumes Ct, supplies working hours Nt and saves in
one-period, nominal bonds Bt, which are in zero net supply. The householdmaximizes

max
Ct ,Nt ,Bt

∞
∑

t=0
βtu(Ct,Nt), (1)

subject to

PtCt +QtBt + Tt = Bt−1 +WtNt +Dt, (2)

where Tt are lump-sum taxes,Wt is the nominal wage, Dt are lump-sum dividends
from firms, and Qt ≡ e−it is the price of the nominal bond and it is the nominal interest
rate. Aggregate consumption Ct is

Ct = {∫
1

0
[At( j)Ct( j)]

ϵ−1
ϵ dj}

ϵ
ϵ−1

, (3)

where Ct( j) is the quantity of product j ∈ [0, 1] and At( j) is the idiosyncratic quality of
product j, which follows a random walk in logs with volatility σ:

logAt ( j) = logAt−1 ( j) + σεt ( j) , (4)

εt is an i.i.d Gaussian innovation and σ is a parameter.
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The demand for product j is

Ct( j) = At( j)ϵ−1 (
Pt( j)
Pt
)

−ϵ
Ct (5)

where Pt( j) is the price of product j, and the aggregate price index is

Pt =
⎡
⎢
⎢
⎢
⎢
⎣

∫

1

0
(
Pt( j)
At( j)

)

1−ϵ
dj
⎤
⎥
⎥
⎥
⎥
⎦

1
1−ϵ

. (6)

We assume separable utility u(Ct,Nt) = logCt − Nt as in Midrigan (2011). Thus,
equilibrium in the labor market requires:

wt = Ct, (7)

where wt =Wt/Pt is the real wage. The Euler equation is

1 = [Λt,t+1eit−πt+1] , (8)

where it is the nominal interest rate, and the the stochastic discount factor is

Λt,t+1 ≡ β
u′ (Ct+1)
u′ (Ct)

. (9)

2.2. Monopolistic producers

Good j ∈ [0, 1] is produced by firm j according to a constant-returns to scale technology

Yt( j) = At
Nt( j)
At( j)

, (10)

where Nt( j) is labor hours, At is aggregate productivity and At( j) is idiosyncratic
quality. Firmsmaximize the sumof the discounted future profits, using the household’s
discount factor. They take the demand function (5) as given. Firm j’s nominal profit
function given its nominal price Pt( j) is

Dt( j) =Pt( j)Yt( j) − (1 − τt)WtNt( j)

=Pt( j)1−ϵAt( j)ϵ−1 (
1
Pt
)

−ϵ
Ct − (1 − τt)

Wt
At
At( j)ϵ (

Pt( j)
Pt
)

−ϵ
Ct

(11)

where τt is an employment subsidy financed by lump-sum taxes, and where for the
second line we have used the goods market-clearing condition Yt( j) = Ct( j) and
conditions (5) and (10).

Crucially, firm j must incur a fixed “menu cost” η in labor units to change its price.
The firm chooses each period whether to update its nominal price to a new one P∗t ( j),
or to keep the price from last period Pt−1( j). This is the source of endogeneity of price
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stickiness in the model.
It is useful to express the firms’ optimal pricing decision as a function of the

price gap xt( j) ≡ pt( j) − p∗t ( j), which is the log distance between the current,
pt( j) ≡ log ( Pt( j)

At( j)Pt ), and the optimal quality-adjusted relative price of good j,

p∗t ( j) ≡log(
P∗t ( j)
At( j)Pt ). Thanks to the convenient assumptions of random-walk quality

shocks as in Midrigan (2011), the price gap is the only firm-level state variable that
the pricing decision depends upon. The firms’ optimal pricing policy follows a Ss
rule such that a firm j keeps its nominal price Pt( j) constant if xt( j) ∈ [st,St], and
resets it to the optimal price P∗t ( j) otherwise (equivalent to set xt( j) = 0). Subindex t
subsumes all aggregate states. Idiosyncratic quality shocks generates heterogeneity
across nominal reset prices P∗t ( j); however, quality-adjusted relative reset prices
p∗t ( j) are all identical. Thus, we drop subindex j to simplify notation. When a firm
keeps its nominal price constant, its price gap evolves according to

xt = xt−1 + pt − p
∗
t + p

∗
t−1 = xt−1 − σεt − π

∗
t (12)

where
π∗t ≡ p

∗
t − p

∗
t−1 + πt (13)

is the inflation of the quality-adjusted relative optimal reset price.
The optimality conditions for the pricing rule require

V ′t (0) = 0, (14)

Vt(0) − ηwt = Vt(st), (15)

Vt(0) − ηwt = Vt(St), (16)

where firms’ end of period value function Vt(⋅) is expressed only in terms of price
gaps as all other states are aggregate and are subsumed by a time subindex. Equation
(14) requires that the value function is maximized at the optimal reset price (x = 0),
and equations (15, 16) require indifference between resetting the price and paying the
menu cost versus keeping prices constant at the endogenous Ss thresholds. The value
function equals

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

x − x′ − π∗t+1
σ

)]dx′) [(Vt+1 (0) − ηwt+1)] ,
(17)

where the current real profits Πt(x) are given by

Πt(x) ≡
Dt
Pt
= Cte(x+p

∗

t )(1−ϵ) − Ct(1 − τt)
wt
At
e(x+p

∗

t )(−ϵ). (18)
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The value function is the sum of current profits and the discounted continuation value.
The latter depends on the firms’ price gap next period, which, unless changed, evolves
according to (12) and is affected by the stochastic component ε whose density is ϕ(ε).
The continuation value then consists of two parts. The first measures the expected
value Vt+1(x′) in the states of the world where the price is not changed, i.e. when x′

remains within the inaction threshold [st+1, St+1]. The second measures the expected
value for the states of the world where the price is updated to x′ = 0, which is given by
Vt+1(0) net of menu cost ηwt+1.

Finally, Appendix D shows that V ′t (0) can be expressed as the sum of the marginal
effect of x on current profits and on the expected continuation value:

V ′t (0) = Π
′
t(0) +

Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+

Λt,t+1
σ
[ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
)] (Vt+1(0) − ηwt+1) .

2.3. Aggregation and equilibrium conditions

Firms’ individual price-setting decisions give rise to an endogenous probability density
of end-of-period price gaps gt(x). It consists of a continuous part, gct (x), and a mass
point (dirac delta) at x = 0, g0t such that

gt(x) ≡ gct (x) + g
0
t δ(x). (19)

The countinous part evolves according to the following law of motion

gct (x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
σ ∫

St−1
st−1 g

c
t−1(x−1)ϕ(

x−1−x−π∗t
σ )dx−1 + g0t−1ϕ(

−x−π∗t
σ ) , if x ∈ [st,St],

0, otherwise,
(20)

and the mass point evolves according to

g0t = 1 − ∫
St

st
gct (x)dx. (21)

The first term on the right-hand side in the first line of equation (20) describes the
evolution of the density of price gaps of those firms that kept their nominal prices
unchanged last period, while the second term is the distribution of current price gaps
of the firms that did change their prices last period. Outside the Ss band, there is no
mass, since firms whose price would fall outside the Ss band reset their prices in the
current period, thus creating a mass point at zero, equal to the frequency of price
changes (equation 21).
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The aggregate price index implies

1 = ∫
St

st
e(x+p

∗

t )(1−ϵ)gt (x)dx. (22)

In turn, the labor-market clearing condition is given by

Nt =
Ct
At
∫

St

st
e−ϵ(x+p

∗

t )gt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

price dispersion

+ ηg0t
°

price adjustment cost

(23)

such that the total hours worked equals the total use of labor for the production of
aggregate output (the term Ct

At ) adjusted for the loss in aggregate output due to price
dispersion (the term in parenthesis) and the total amount of hours allocated to price
adjustment (the second term in the right-hand side).

The 12 equations (7), (8), (13) - (17), (19)- (23) plus Ct = Yt define the private equilib-
rium in wt,Nt,Yt,Ct,Vt(⋅), St, st, p∗t ,πt,π

∗
t , gt(⋅), g

c
t (⋅), g

0
t , it. The central bank has one

degree of freedom to set the nominal rate.

2.4. Aggregate Shocks

The logarithm of aggregate productivity follows a first-order autoregressive process:

logAt = ρA logAt−1 + εA,t, (24)

where ρA ∈ [0, 1] and εA,t is an aggregate productivity shock, which arrives unexpect-
edly. The employment subsidy τt follows the autoregressive process:

τt − τ = ρτ(τt−1 − τ) + ετ,t, (25)

where ρτ ∈ [0, 1], τ is the steady-state employment subsidy, and ετ,t is an unexpected
cost-push shock.

2.5. Auxiliary models

We briefly present three alternative models we use in our analysis.

Simplified model. We also present a simplified version of the model to foster intuition.
The simplification consists of dividing each period t into two: a night and a day. The
day is as in the full model. What’s new is the night, when only firms are awake and
can reset their prices for free.

Under this setup, first, the price gap distribution collapses to a mass point at x = 0
every night by construction as each firm closes its price gap. Second, when making a
decision during the day, firms set prices only with the current period in mind, as if
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their discount rate were zero (β = 0). They do this because they know that they will be
able to reset their prices for free again the next night.

The simplification maintains the state-dependent nature of the firms’ price-setting
problem: both how many and which prices change will be decided endogenously as a
response to the aggregate and idiosyncratic shocks, taking into account the conduct of
monetary policy. We gain tractability, however, by replacing the dynamic problem of
the firms with a series of static problems, where future expectations play no role in
the price-setting decisions. The advantage of the approach is that, as we show below,
objects familiar from conventional optimal policy analysis like the Phillips curve,
which describes the trade-off between inflation and output gap, and the target rule,
which describes the relationship between inflation and output gap under optimal
policy, become structural. Despite its simplicity, the model generates results that are
not only qualitatively but also quantitatively similar to analogous objects in the full
model.

Thanks to this simplifying assumption, the firm’s value function (17) collapses to
the current profit function (18). Therefore the optimality condition for the reset price
(14) simplifies to a constant markup over marginal costs. Dropping the time index t
for brevity, it reads

ep
∗

=
ϵ

(ϵ − 1)
(1 − τ)w. (26)

The firms’ price adjustment thresholds (15) and (16) now characterize the threshold
values which equate current profits under unchanged prices, Π(x), with profits under
the optimal price net of the menu costs, Π (0) − ηw

(ep
∗

)
1−ϵ
− (1 − τ)w(ep

∗

)
−ϵ
− η = e(p

∗+s)(1−ϵ)
− (1 − τ)we(p

∗+s)(−ϵ) (27)

(ep
∗

)
1−ϵ
− (1 − τ)w(ep

∗

)
−ϵ
− η = e(p

∗+S)(1−ϵ)
− (1 − τ)we(p

∗+S)(−ϵ). (28)

Free price changes in the preceding night implies that gc−1(x) = 0, g
0
−1 = 1, p

∗
−1 = 0

and, therefore, the price gap distribution gc is now normally distributed with its mean
given by (π + p∗) and with variance σ2:

gc (x) =
1
σ
ϕ(

x + π + p∗

σ
) if x ∈ [s,S]. (29)

These 4 equations, together with 4 equations which don’t change relative to the full
model (labor supply (7), frequency of price changes (21), labor-market-clearing (23),
definition of the price level (22)) define an equilibrium in 9 variables w,π,C,N, s,S,
g0, gc(⋅), p∗. The policymaker has one degree of freedom to choose π.13

Nonlinear Calvo model. Thismodel is a natural benchmark that we contrast ourmodel
to. It is identical to the baseline economy without idiosyncratic shocks σ = 0 or menu

13To ensure that firms have no incentive to deviate from a symmetric reset price at night, we assume
that the value of τ expected for the next day is such that π = 0 is the optimal policy.
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costs η = 0. Instead, firms face an exogenous price change probability θ as in Calvo
(1983). We will use this benchmark both in the full and in the simplified setup.

CalvoPlus model. We use this model to study the robustness of our main results. It
is an extension of our baseline model proposed by Nakamura and Steinsson (2010),
where the menu cost is stochastic: it equals ηwith probability α and zero otherwise.
The extension improves the realism of the framework both by better capturing the
distribution of price changes through the introduction of small price changes, and bet-
ter matching the extent of monetary non-neutrality obtained by time-series evidence.
Appendix G describes the details.

3. Optimal monetary policy problem and computational approach

We start our analysis by introducing the central bank’s problem. We consider the
Ramsey problem, i.e., optimal monetary policy under commitment. We also present a
new computationalmethod to deal with the complexities associated with the problem’s
high dimensionality, and we specify our baseline calibration.

3.1. Ramsey problem

The central bank selects the paths for all equilibrium variables subject to the compet-
itive equilibrium conditions. Combining households’ utility function in (1) and the
market-clearing conditions for final output Ct = Yt and for labor (23), the problem of a
benevolent central bank is

max
{wt,Yt,Vt(⋅), St, st,

p∗t ,πt,π
∗
t , gt(⋅), g

c
t (⋅), g

0
t }
∞
t=0

∞
∑

t=0
βt (logYt −

Yt
At
∫

St

st
e−ϵ(x+p

∗

t )gt (x)dx − ηg0t )

subject to the labor supply (7), firms’ value function Vt(⋅) (17), firms’ optimal pricing
{st,St, p∗t } (14), (15), and (16), the definition for inflation in quality-adjusted relative
optimal reset price π∗t (13), the distribution of price gaps (gt(⋅), g

c
t (⋅), g

0
t ) determined

by equations (19)-(21), and the aggregate price index (22).
Two observations are due. First, we follow the approach in standard optimal mon-

etary analysis (Woodford 2003; Galí 2008) of separating the Ramsey problem in two:
the equilibrium pinned down by a benevolent central bank and the implementation
problem, i.e. the nominal interest rates path consistent with the equilibrium according
to the household’s Euler equation (8).

Second, note that the constraints set for this problem are continuous and differen-
tiable even though the individual firm’s price policy function is not. This is so because
each firm has zero mass, and thus the discontinuity in a single firm’s behavior does not
lead to a discontinuity in aggregates. Furthermore, Vt(x) and gct (x) are continuously
differentiable over the relevant range (st,St).
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3.2. Computational solutionmethod

We solve the problem with a new nonlinear algorithm, which extends the approach
in González et al. (2024) to discrete time. The core idea is to represent the Ramsey
problem of the central bank as a high-dimensional optimization problem in which
the Bellman equation and the law of motion (LOM) of the price-gap distribution are
constraints. We summarize the approach here, while Appendix F presents the details.

The solution of this Ramsey problem poses several challenges. First, the value
function Vt(⋅) and the distribution gct (⋅) are infinite-dimensional variables and we
need to compute the first-order conditions (FOCs) with respect to these variables.14

Second, any approximation of the problem needs to account for the discrete choices
of the firm and to be smooth and accurate enough to capture the higher-order effects
of policy.

The first step consists in transforming the original infinite-dimensional problem
into a high-dimensional problem by discretizing the value and distribution functions.
To this end, we replace the distribution and value functions by piecewise linear func-
tions over a grid. The grid itself is endogenous. It is selected to include the two bounds
of the inaction region [st,St] and the optimal price (xt = 0) at each t.

Next, integrals to compute expectations are evaluated algebraically, conditional on
those piecewise linear functions. Then, we require the law ofmotion of the distribution
and the Bellman equation to hold exactly at the (endogenous) grid points at each period
t. In doing so, we explicitly take the mass point at 0 into account in the distribution, in
line with the notation in the paper. This transforms the private equilibrium conditions
into a large system of difference equations. In particular, the firms’ Bellman equation
at time t can be approximated over a grid of price gaps x as

Vt =Πt + [AtVt+1 − bt+1ηwt+1] ,

where Vt and bt are vectors of the value function and the expected adjustment proba-
bility evaluated at different grid points, respectively, and At is a matrix that captures
the idiosyncratic transitions due to firm-level quality shocks and aggregate inflation.

14There are a number of proposals in the literature to deal with this problem. Nuño and Thomas
(2022), Smirnov (2022), and Dávila and Schaab (2022) deal with the full infinite-dimensional planner’s
problem in continuous time. This implies that the Kolmogorov forward (KF) and the Hamilton-Jacobi-
Bellman (HJB) equations are constraints faced by the central bank. They derive the planner’s FOCs using
calculus of variations, thus expanding the original problem to also include the Lagrange multipliers,
which in this case are also infinite-dimensional. These papers solve the resulting differential equation
system using the upwind finite-difference method of Achdou et al. (2021). Bhandari et al. (2021) make
the continuous cross-sectional distribution finite-dimensional by assuming that there are N agents
instead of a continuum. They then derive standard FOCs for the planner. In order to cope with the
large dimensionality of their problem, they employ a perturbation technique. Le Grand et al. (2022)
employ the finite-memory algorithm proposed by Le Grand and Ragot (2022). It requires changing the
original problem such that, after K periods, the state of each agent is reset. In this way the cross-sectional
distribution becomes finite-dimensional.
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Similarly, the law of motion of the density for x ≠ 0 is

gct = Ftg
c
t−1 + ftg

0
t−1,

where gct and ft are vectors representing the probability distribution function and
the scaled and shifted normal distribution, respectively, Ft is a matrix that captures
the evolution of the price distribution due to firm-level quality shocks and aggregate
inflation. We define

g0t = 1 − e
⊺
t gct .

as themass point at xt = 0where et is a vector ofweights corresponding to the trapezoid
rule. The labor market clearing condition and the aggregate price index can be written
in a similar form.

Once we have the discretized version of the problem, we find the Ramsey planner’s
FOCs by symbolic differentiation. We are now left with an even larger system of
difference equations, as we have FOCs for the value and distribution functions at each
grid point, and the associated Lagrange multipliers.

Next, we find the Ramsey steady state. To do so, we use the steady-state private
equilibrium conditions to construct a nonlinear multidimensional function mapping
inflation to the rest of the variables. We then combine this function with the planner’s
FOCs. As this system is linear in Lagrange multipliers, finding its solution boils down
to finding the root of a nonlinear uni-variate function in inflation. To do so we use the
Newton method. Finally, to compute the dynamics of the Ramsey problem, we solve
the system of difference equations non-linearly in the sequence space, also using the
Newton method.

The symbolic differentiation and the two applications of the Newtonmethod can be
automated using several available software packages, in our case, Dynare (Adjemian
et al. 2023). The approach is also compatible with the nonlinear sequence-space Jaco-
bian toolbox by Auclert et al. (2021). It can be employed to compute optimal policies in
a large class of heterogeneous-agent models. Compared to other algorithms, it stands
out as easy to implement. In our application, it runs in a few minutes on a normal
laptop. As González et al. (2024) show, this algorithm delivers the same results as
computing the planner’s FOCs using calculus of variations and then discretizing the
resulting system of differential equations.

3.3. Calibration

Table 1 presents the calibration of our baseline and the simplified model. One period
is one months. We set the discount factor to 0.961/12, which implies a steady-state real
interest rate of 4%. The elasticity of substitution across products is ϵ = 7, as in Golosov
and Lucas (2007).

We calibrate the menu cost and the standard deviation of idiosyncratic shocks
to match two target moments: an 8.7% monthly frequency of price changes in the
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β ϵ η σ τ ρA ρτ

Baseline 0.961/12 7 0.010 0.012 0.1435 0.951/3 0.91/3

Simplified model 0.961/12 7 0.004 0.021 0.1431 0 0
TABLE 1. Parameter values

steady state as documented for the U.S. in Nakamura and Steinsson (2008), and a 20%
frequency at 10% inflation rate broadly in line with the peak values observed in the U.S.
in 2022 as documented byMontag and Villar (2023). In the baseline model, the implied
menu cost is η = 1% and the steady-state standard deviation of idiosyncratic quality
shocks is σ = 1.2%.15 The steady-state labor subsidy τ is set to ensure that output is at
its efficient level.

Finally, the persistence of shocks is taken from Smets and Wouters (2007), once
transformed from quarterly to monthly frequency: ρA = 0.951/3 for aggregate produc-
tivity shocks and ρτ = 0.91/3 for employment subsidy shocks (interpreted as cost-push
shocks).

These parameters are inherited also by the additional auxiliary models. The same
calibration targets imply an η = 0.4% and σ = 2.1% in the simplified model. In the
Calvo model, we disregard idiosyncratic shocks σ = 0 and calibrate the probability of
price adjustment (1−θ) so as to make the Calvo model imply an identical response to a
small monetary policy shock as our baseline model (Auclert et al. 2024). This requires
a parameter θ = 40%.

4. Strike while the iron is hot

This section focuses on our main result: the nonlinearity of optimal monetary policy
in response to cost-push shocks.16 We first present numerical simulations in our
full model to characterize the nature of the nonlinearity and to contrast it with the
conventional Calvo framework. Then we describe its main driving forces relying on
the simplified model. We close the section by showing robustness in the CalvoPlus
model.

The section analyzes timeless optimal monetary policy (Woodford 2003; Galí 2008).
This corresponds to the optimal monetary policy starting from the Ramsey steady
state, when all of the Lagrange multipliers are initialized at their steady-state values.17

15The calibration does not match the average absolute size of price changes. Our results would be
qualitatively similar under the alternative calibration that would match the steady state frequency and
the size of price changes (not shown).

16We defer the analysis of the steady state of the optimal Ramsey problem to Section 5.
17We assess the implications on the time inconsistency of optimal policy in our state-dependent

framework in Section 5. As long as the labor subsidy τ in the steady state offsets the average markup
distortion, as in our baseline calibration, the optimal policy is virtually time consistent.
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4.1. Nonlinear optimal monetary response to cost-push shocks

How should optimal monetary policy react to cost-push shocks of different sizes, and
how do reactions in our baseline model compare to those in the canonical Calvo
framework? Figure 1 shows impulse responses to a large cost-push shock (ετ,t, blue
solid line) in the baseline model, and contrasts it to linearly-scaled impulse responses
to a small cost-push shock (yellow dotted line); and to a large cost-push shock in the
Calvo model (red dashed line).18 The size of the large shock is calibrated to generate
a 20% frequency at the peak in the baseline model, a 12.3 percentage point increase
from the 8.7% frequency at the steady state. The magnitude of the frequency increase
is broadly in line with that observed during the 2022-2023 inflation surge in the U.S.
(Montag and Villar 2023).19

The optimal policy response “leans against the wind” in all three cases. The central
bank tolerates an inflation increase (panel a) to partially cushion the decline in output
(panel b).20 Optimal policy implies a temporary decline in the real interest rate in
parallel with the spiking inflation, but prescribes a commitment to a persistently tight
policy stance in the future.

Optimal monetary policy in the menu cost model is nonlinear. Impulse responses
to the large shock are significantly different from the linearly-scaled responses to
a small shock. Notably, the frequency under a large shock increases substantially,
while it remains almost unchanged after the small shock, even though it is linearly
scaled (panel d). This nonlinear frequency response is an inherent feature of the
model. Consider a small inflationary shock. The repricing frequency stays unchanged
because the fall in the frequency of price decreases almost completely offsets the rise
in the frequency of price increases. If one considers instead a large inflationary shock,
the price decreases fade out and the rise in the frequency of price increases quickly
dominates, thus producing an overall increase in the repricing frequency (Gagnon
2009; Karadi and Reiff 2019; Alvarez and Neumeyer 2020; Alexandrov 2020; Cavallo
et al. 2024).

The optimal policy is characterized by a more aggressive monetary policy (panel c)
after the large cost-push shock, which raises the frequency of price changes, than after
the small shock. The central bank “strikes while the iron is hot.” The tighter policy
leads to a substantially more muted increase in inflation after the large shock than
after the linearly-scaled small shock (panel a). The output effects are broadly similar
(panel b).21

18The scaling factor is the ratio between the shock size of the large (68%) and the small shock (0.25%).
19The impulse responses are computed nonlinearly under perfect foresight. For small shocks, this is

equivalent to the first-order approximation to the stochastic problem, as discussed by Boppart et al. (2018).
For large shocks, its interpretation is similar to that in Cavallo et al. (2024): an unexpected once-and-for-all
large shock that hits the economy in the deterministic steady state.
20For cost-push shocks, output equals the output gap, as this type of shock yields no variation of efficient

output.
21The output effect is somewhat smaller for large adverse cost-push shocks than for linearly-scaled

small shocks in the Calvomodel (see Figure 2). This nonlinearity of the underlying framework is inherited
in the menu cost model, which explains why output declines slightly more in the case of small shocks.
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FIGURE 1. Impulse responses to a cost-push shock under the optimal monetary policy

The figure shows impulse responses in deviations from steady state to a large cost-push shock in the
baselinemenu cost model (blue solid line); and it contrasts the responses with those of a linearly-rescaled
small cost push shock in the baseline model (yellow dotted line) and a large cost-push shock in the Calvo
model (red dashed line).

Figure 2 displays the responses of key macro variables under optimal policy for a
range of different adverse cost-push shock sizes in the menu cost model (blue solid
line), in the Calvo model (red dashed line), and in a counterfactual menu-cost model
(yellow dotted line) described below in Section 4.3. In particular, it draws the peak
responses of inflation, output, and frequency, as well as the cumulative response of
the annualized real interest rate over the first 2 years of the shock (∑24t=1(it − πt+1)/2).

The peak frequency response in the baseline model (panel d) increases with the
absolute shock size and has a zero slope around the steady state. This confirms the
nonlinear nature of the optimal frequency response outlined above: frequency stays
unresponsive to small shocks, but responds strongly to large shocks. The cumulative
real rate figure (panel c) confirms that the policy is more aggressive in the menu cost
model for large shocks than for small shocks and than in the Calvo model.22 In line
22Though hard to perceive visually, the slope of the solid blue line in panel c is similar to that of the

dashed red line when the shock size is close to zero. The cumulative real rate as a function of shock size
is thus slightly convex in the menu cost model while concave in the Calvo model.
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FIGURE 2. Optimal response to a cost-push shock for different shock magnitudes.

The figure displays the difference in the value of inflation, output gap, and repricing frequency between
the period after the shock arrival and the value in the deterministic steady state. The real interest rate is
evaluated over the first 2 years of the shock. For reference: a cost-push shock caused by the full removal
of the subsidy (-100%) causes an increase in real marginal costs of around 5% on impact.

with the more aggressive policy in the menu cost model, the peak output effect is
somewhat larger than in the Calvo model (panel b). Finally, the response of inflation
increases less than proportionally with shock size (panel a) in the menu cost model,
which is in contrast with the near-linearity of the inflation response of the Calvomodel.
When shocks are small, the optimal response of inflation in both models is near-linear
and has a similar – though not identical – slope.

Figure 3 illustrates the relationship between inflation and the cumulative real rate
under optimal policy for different cost-push shocks. The cumulative real interest rate
can be interpreted as the “policy stance” towhich the central bank commits in response
to the inflationary cost push shock. When inflation is high, the central bank sets the
nominal rate path so as to achieve an over-proportional increase in the cumulated
real rate. In other words, when firms adjust prices more frequently, the policy stance
responds more strongly to inflation.
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FIGURE 3. Strike while the iron is hot

The figure displays the relationship between impact inflation and the cumulative real interest rate under
optimal policy and different cost push shocks. The real interest rate is evaluated over the first 2 years of
the shock.

4.2. Inspecting themechanism in the simplifiedmodel

In order to provide intuition for the driving forces behind the strong anti-inflationary
stance of the central bank after large cost-push shocks, we analyze the simplified
version of the model introduced in Section 2.5. As outlined there, the simplification
introduces a subperiod of night, when the firms can reset their prices for free. This
simplification transforms the dynamic problem into a series of static problems, but
keeps the key channel active: firms decide endogenously when to adjust prices in
response to the average shock and to monetary policy.

We cast the central bank’s problem as a 2-dimensional optimization problem in
output23 and inflation, in analogy to the well-known textbook analysis of optimal
monetary policy. A key advantage of the simplified model is that we can do this fully
nonlinearly, without any need for approximation. We first inspect the central bank’s
choice set, defined by the Phillips curve, and then its objective.

Phillips curve. The central bank’s choice set is given by the possible allocations con-
sistent with a private equilibrium. We show first that these equilibria determine a
relationship between inflation and output (or equivalently, the output gap): the Phillips
curve. We characterize this relationship as a proposition and relegate its proof to the
appendix. Throughout this section, we suppress the time subindex t for brevity.

PROPOSITION 1. Private equilibria in the simplified model can be characterized by a single
equation in inflation and output as follows

1 = ∫
S

s
e(p)(1−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (

ε (1 − τ)
ε − 1

Y)
1−ϵ
[1 − ∫

S

s
1
σ
ϕ(

p + π
σ
)dp] , (30)

23The efficient output is Y e = 1, so log output equals to log output gap.
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FIGURE 4. Phillips curve

Panel a plots the Phillips curve implicitly defined by equation (30), as well as the counterfactual value in
the case of Calvo pricing. The output gap is logY and annualized inflation is 12π. Panel b displays the
mapping between frequency and inflation in the simplified model.

where s and S are implicit functions.24

PROOF. See Appendix A.

Panel (a) of Figure 4 shows the Phillips curve in the calibratedmodel and compares
it to the case of Calvo pricing. In both cases, the curves are increasing: under sticky
prices, a policy easing that raises inflationwould also raise output.25 The key difference
between Calvo and state-dependent pricing models is that while in Calvo the Phillips
curve is near linear, the curve is convex in the menu cost model: that is, as inflation
increases, its expansionary effect on output diminishes.

Panel (b) of Figure 4 depicts the relationship between the frequency of price
changes and inflation in the menu cost model.26When inflation is low, the frequency
of price changes remains close to its steady-state level, which is 8.7% per month in
our calibration. Thus, locally the economy behaves similarly to a (suitably calibrated)
Calvo economy (as emphasized by Auclert et al. 2024). However, as inflation gets larger,
frequency rises as more and more firms decide to update their prices. This makes
average prices more flexible, reducing the responsiveness of output to changes in
inflation, thus steepening the Phillips curve.27

24S(Y ,τ) and s(Y ,τ) are the two roots of the equation ( ϵ
ϵ−1(1 − τ)Y)

1−ϵ−((1 − τ)Y)1−ϵ−η = x(Y ,τ)1−ϵ−
(1 − τ)Yx(Y ,τ)−ϵ for x = s,S.
25At zero inflation, the slopes are identical in the two models. This happens by construction, as the

Calvomodel is re-calibrated to replicate the slope of the Phillips curve in the limit as inflation approaches
its steady state value.
26Frequency is exogenous and independent of inflation in the Calvo model (not shown).
27At some point, in our calibration at frequencies over 40% per month, and roughly corresponding

to annualized inflation levels around 20%, the Phillips curve becomes backward bending (not shown).
At this level, monetary policy reach its maximum effectiveness in stimulating activity, and any further
inflation reduces output. However, such levels of inflation and frequency are fairly extreme. For the
rest of the analysis we restrict our attention to inflation levels that can be large, but not as large as to go
beyond this point.
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The Phillips curve describes the choice set of the policymaker setting inflation.
Its slope reflects the state-dependence of the inflation-output trade-off involved in
monetary policy decisions: It states how much the output gap must decline to reduce
inflation by a percentage point, also known as the sacrifice ratio ofmonetary policy. This
slope more than doubles when the frequency reaches 20% per month, a magnitude
documented during the post-COVID inflation surge (Montag and Villar 2023). While in
a low-frequency and low-inflation environment the sacrifice ratio is high, it becomes
much lower once frequency and inflation increase.28

Welfare. We turn next to the central bank’s preferences in the simplified model. The
central bank maximizes welfare (1), which in the simplified model is equivalent to
maximizing period utilityU = logC−N.29 First, we describe how the underlyingwelfare
distortions, namelymisallocation and price-adjustment costs, affect utility. Second, we
link these welfare distortions to the output gap and inflation in the simplified model.

PROPOSITION 2. Let U −Ue be the central bank’s utility gap relative to the utility under
efficient allocation expressed in efficient-consumption-equivalent units. Let the welfare-
relevant markup be the relative price of firm j divided by the welfare-relevant marginal cost:
µ( j) = P( j)/P

WRMC( j) , where WRMC( j) ≡ wA( j)/A. Then the utility gap can be expressed as a
function of the average welfare-relevant markup (µ), the markup dispersion (ζµ), and price
adjustment costs as

U −Ue = − logµ − (
1
µ
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup

−
1
µ
(ζµ − 1)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Markup dispersion

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Misallocation

− ηg0
°

Adjustment costs

, (31)

where the average welfare-relevant markup is µ ≡ (∫ µ( j)1−ϵdj)
1

1−ϵ , the markup dispersion
is ζµ ≡ ∫ (µ( j)/µ)−ϵdj, and ηg0 are the price adjustment costs in labor units.

PROOF. See Appendix B.

Proposition 2 shows that welfare costs are intuitively driven by two components:
First, themisallocation, which is caused by the deviation of firms’ relative prices from
the welfare-relevant marginal costs, introduces a labor wedge. Misallocation can be
further decomposed into the “average markup” term which is a nonlinear function
of the average welfare-relevant markup (µ), and the product of the inverse average
markup and the “markup dispersion”. The average welfare-relevant markup describes
average over- or under-consumption, while the markup dispersion refers to the inef-
ficient relative consumption of different good varieties. Second, labor is inefficiently
28Blanco et al. (2024b) also discuss how the sacrifice ratio changes with the level of inflation.
29This is because private equilibrium conditions are static in the simplified model. Note that for the

same reason there is no difference between commitment and discretion.
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allocated to price adjustment (menu costs), which is captured by the third component.30

In the simplified model, the utility gap and its components can be expressed as
functions of inflation and output (gap). This is analogous to the Calvo case, where
welfare can also be expressed as a function of the output gap and inflation.31

This is formulated in Proposition 3.

PROPOSITION 3. In the simplified model, utility gap can be expressed as

U −Ue = log(Y) − (Y − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup

− (32)
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Adjustment costs

where s, S and p∗ are implicit functions of inflation.32 The utility function depends only
on inflation and output: the first term driven by the average welfare-relevant markup in
equation (32) depends only on the output (gap), whereas price dispersion and adjustment
costs depend only on inflation.

PROOF. See Appendix A.

Figure 5 illustrates this decomposition for the simplified menu cost model and
contrasts it to the analogous decomposition in Calvo. The average welfare-relevant
markup coincides in the two models (panel b). Price dispersion increases in inflation
in Calvo, while it mildly decreases in inflation in the menu cost model (panel c). This
decrease is due to the endogenous increase in the frequency of price changes, which
leads more firms to close their markup gaps. Furthermore, it is exactly the firms
with the largest markup gaps, who endogenously self-select to adjust. In contrast, the
adjustment costs (panel d) increase with inflation in the menu cost model in line with
the endogenous increase in the frequency. Adding up the latter two pricing frictions
and comparing them to price dispersion in Calvo, we see that the welfare effects of
nominal rigidities are U shaped in inflation in both models. Quantitatively, however,
the losses from nominal rigidities are somewhat smaller in the menu cost model
(Burstein and Hellwig 2008). Thus, the central bank is slightly less inflation-averse
than in the case of Calvo pricing, which is reflected in the different degrees of ellipticity
of the iso-welfare curves shown in panel a.
30The welfare decomposition into distortions of Proposition 2 straightforwardly generalizes to the full

model. It also applies to Calvo model, in which case the last term is 0.
31In particular, in Calvo, up to a second order the utility function is quadratic of the form

− 12 [ ŷ
2 + ϵ ( 1−θθ ) π̂

2], where the ‘hat’ denotes deviation from the zero inflation steady state (Woodford
2003).
32s(π), S(π) and p∗(π) solve the Ss band conditions, and the definition of the price level.
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FIGURE 5. Welfare decomposition

Note: Decomposition of welfare differences according to equation (31). Welfare gaps are expressed in %
of efficient consumption.

Optimal policy. We can now set up the central bank’s problem. It chooses inflation
π and output Y so as to maximize the objective (32) subject to the Phillips curve (30).
Figure 6 represents this problem and its solution graphically. It shows the Phillips
curve (PC, dashed lines) for a particular value of the exogenous cost-push shock τ;
and the utility isoquant (thin solid lines) that is tangent to that PC. The optimal policy
is defined by their tangential point, points A and B for Calvo and menu cost pricing,
respectively. The “target rule” traces these points for different levels of the cost-push
shock (thick solid line).

Three key insights can be derived from this figure. First, the slope of the target
rule at zero is slightly smaller in the menu cost economy than in the Calvo economy.
Since the Phillips curve slopes coincide for both models at zero by construction, the
different slope of the target rule is exclusively due to the fact that the welfare function
is less anti-inflationary in the menu cost model. This effect is quantitatively small.

Second, the target rule is almost linear under Calvo pricing (red). This is the conse-
quence of an almost linear Phillips curve and a welfare function that is approximately
quadratic. Under menu cost pricing, however, the target rule is concave (blue). This
implies that the central bank leans more and more aggressively against inflation as
inflation increases. The central bank strikes while the iron is hot.

This begs the question of why. Calvo and menu cost models differ in both the
objective and the constraint. Which one is responsible for this? To shed light on this
question, we compute optimal policy assuming that the central bank faces the Phillips

ECB Working Paper Series No 3068 26



FIGURE 6. Optimal policy and the target rule

This figure combines the welfare functions from panel a in Figure 5 with the Phillips curves from panel a
in Figure 4 to derive the target rule.

curve of the menu cost framework, but it has the objective over inflation and output of
the Calvo model. That is, we look for tangential points of the blue Phillips curve with
the red iso-welfare curve. Point C marks this point for the given Phillips curve. The
yellow line traces these points out for all levels of the cost-push shock. Since the Calvo
central bank is slightly more inflation averse, the yellow line is lower than the blue
menu-cost target rule. Yet, the degree of concavity is similar. We can thus conclude
that the nonlinearity of the target rule in the menu cost model is driven by the strong
convexity of the Phillips curve.33 The shape of the objective function, if anything,
diminishes the concavity of the target rule a bit, relative to Calvo. This is the third
insight.

What is the intuition behind the strike while the iron is hot result? In the case of
small shocks, the change in the frequency of price adjustments is negligible, and thus
the logic of the Calvo framework still applies: The central bank tolerates some inflation
to partially cushion the fall in the output gap. However, as inflation rises, frequency
starts to pick up and prices become more flexible. This reduces the sacrifice ratio: to
achieve the same impact on the output gap, the central bank would need to let inflation
increase substantially more in this case, and it is not willing to do so. Thus, after a
large cost-push shock, the central bank stabilizes inflation more relative to the output
gap than after small shocks. The central bank “leans against frequency,” tightening
policy more aggressively in the case of a large shock that increases frequency. In the
nonlinear Calvo model (red dashed line), by contrast, the nonlinearity is negligible,
despite the fact that we do not linearize the model.
33The cost-push shock itself causes a parallel sideward shift of the Phillips curve (Proof: see appendix

A). It is thus not a cause for the nonlinearity of the target rule.
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Note that the strike while it’s hot result is not obvious. The shape of the objective
function could have fully offset the nonlinearity of the Phillips curve such that the
target rule remained linear. Indeed, in the linearized Calvo framework, for example,
the change in the objective fully offsets the change in the shape of the Phillips curve
caused by permanent changes in the frequency of price changes. There, even though
the slope of the Phillips curve increases with the frequency, the relative weight of
inflation in the objective declines proportionally (Galí 2008). It declines because higher
frequency raises the flexibility of the price level, and reduces the increase in price
dispersion caused by a marginal increase in inflation. The two effects fully offset each
other and the slope of the target rule depends only on the elasticity of substitution
(−1/ε) and not on frequency. We conclude that the relative stability of the objective
function in the presence of large shocks is just as important for our strike it while it’s
hot result as the nonlinearity of the Phillips curve.

4.3. Relation to the full model

In the nonlinear full dynamic model, the Phillips “relationship” is a dynamic multidi-
mensional relationship, depending both on current and expected state variables and is
described by several equations. There is thus no simple structural relationship linking
current inflation and output any more.34 Instead, the Phillips relationship is made up
of a dynamic block of equations which contains not only the definition of the price
level (22), the firms’ optimality conditions (now dynamic) (14-16) and the definition
of frequency (21) as in the static model, but also the law of motion of the distribution
(20), and the value function (17). A similar argument applies to the welfare function
in terms of current inflation and output. The table in the Appendix E compares the
equilibrium conditions of the simplified (static) Calvo and menu cost models to those
of the full model.

Nevertheless,much of the intuition carries over and it is still useful to think broadly
in terms of objective and constraints. To illustrate this, Figure 7 compares the Phillips
curve and the target rule from the simplified model with the analogous relationships
between output and inflation implied by the full model after a cost push shock under
optimal policy (panel a) and after a monetary policy shock under a Taylor rule (panel
b). In all cases we display the response of variables to shocks of different magnitudes
on impact starting from the steady state of the Ramsey problem. As explained above, in
the full model these relationships are not structural, but are conditional on the initial
conditions and the shock process. Nevertheless, these two relationships are fairly
stable with respect to those conditions and are surprisingly similar to the structural
relationships uncovered from the simplified model.

Interpreting this figure for the full model, two features are worth noticing. First,
the slope of the output-inflation relationship under optimal policy (what we call "the
34Note that the same is true in the nonlinear Calvo model, the Phillips curve only emerges under linear

approximation.
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FIGURE 7. Simplified versus full model

Note: Panel a contrasts the target rule in the simplified model (blue dash-dotted line) with the response
of inflation and output gap on impact in the full menu cost (blue solid line) and Calvo models (red dashed
line) to a cost-push shock under optimal monetary policy. Panel b contrasts the Phillips curve in the
simplified model with the impact response to a monetary policy shock under a Taylor rule in the full
menu cost and Calvo models.

target rule") is almost indistinguishable at zero from that under Calvo (panel a), which,
is given by −1/ϵ up to a first order (see Galí 2008). The Calvo model thus delivers a good
approximation of optimal policy for moderate levels of inflation.

Second, the nonlinearity of themenu costmodel becomes quantitatively significant
quite quickly. At 10% inflation, for example, the slope of the Phillips relationship is
150% larger than under Calvo pricing. At the same inflation level, the optimal policy
response to a cost push shock is almost 50% more restrictive in terms of output. Thus,
while at moderate inflation levels the Calvo model is a good enough approximation of
the menu cost model, this equivalence breaks down at inflation levels such as those
seen in 2022, when inflation reached approximately 10 percent.

The nonlinearity of the sacrifice ratio is the main reason behind the “strike while
the iron is hot” result also in the full model. To show this, we have rerun our optimal
Ramsey policy exercise in the full model combining the menu cost framework with a
counterfactual quadratic objective in the (i) inflation gap, the deviationof inflation from
its optimal steady state value, and (ii) output gap with relative weights derived from
the second-order approximation of the Calvo model (Woodford 2003). The objective
approximates the true objective in the nonlinear Calvo framework well. The results
are shown in Figure 2 (yellow dotted line). The figure shows that, in line with the
results of the analogous exercise in the simplified model, the inflation response is
similar, even more nonlinear under this counterfactual scenario than the baseline.
This confirms that the key reason behind the nonlinearity of the target relationship is
the nonlinearity of the Phillips relationship also in the full model.
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4.4. Robustness and sensitivity analysis

We now show the robustness of the nonlinear "strike while the iron is hot" optimal
monetary policy. In particular, we explore its robustness in an extension of the Golosov
and Lucas (2007) model, the CalvoPlus model (Nakamura and Steinsson 2008), and its
robustness to alternative parameter choices.

CalvoPlusmodel. TheCalvoPlusmodel is a variation of the canonicalmenu costmodel,
where the menu cost is stochastic: price adjustment is free with probability α, as in
the Calvo (1983) model, and takes a positive value (η) with probability 1 −α. This setup
introduces small price changes, and therefore, improves themodel’s ability to fit better
the distribution of price changes. At the macro level, by reducing the selection of large
price changes, it increases the real effects of monetary policy and brings it closer to
time-series evidence (Nakamura and Steinsson 2010). In the context of our analysis, the
framework affects the nonlinearity of the Phillips relationship, which raises concerns
that it may potentially modify the monetary policy prescriptions already discussed.
However, we show that this is not the case. This result supports the robustness of the
strike-while-the-iron-is-hot policy conclusion in a realistic extension of the canonical
Golosov-Lucas model.

(a) Target relationship (b) Phillips relationship

FIGURE 8. Target and Phillips relationships in the baseline and in the CalvoPlus model

The figures contrast the relationship between inflation and output gap movements on impact in the
baseline model versus the CalvoPlus model under optimal policy and various sizes of cost-push shocks
(target relationship, panel a) and under a Taylor rule and various sizes of monetary policy easing shocks
(Phillips relationship, panel b). Two parameterizations of the CalvoPlus model are presented: (i) the
probability of a zero menu cost is 50%; and (ii) 80%.

Two parameterizations are presented: (i) the probability of zero menu cost α is
50%; and (ii) 80%. We recalibrate the menu cost η and the dispersion of idiosyncratic
shocks σ parameters to match in the steady state the average frequency in the U.S.
data of 8.7%, and match a 20% frequency increase at a 10% inflation rate.

Results are presented in Figure 8. Panel (a) of the figure shows the target relation-
ship between the inflation rate and the output gap on impact after cost push shocks
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under optimal policy. The figure shows that the relationship is robust in the Calvo-
Plus model: strike-while-the-iron-is-hot policy is still optimal. Notably, the extent of
nonlinearity increases with the Calvo parameter (α): the higher the probability of free
price changes, the more anti-inflationary optimal policy should be. This happens,
even though, as we have seen above, the target relationship is near linear in the Calvo
model. A key factor in this result is that the Calvo parameter (α) in the CalvoPlusmodel
brings the baseline menu cost model closer to the Calvo model for small shocks, but
influences its response to large shocks much less, when the frequency-response is
driven by the behavior of the (1 −α) firms facing positive menu costs.

Panel (b) shows the relationship between inflation and output gap under a Taylor
rule on impact after a monetary policy shock in the three models - the Phillips rela-
tionship discussed above. The figure shows that the CalvoPlus model can substantially
reduce the slope of the Phillips relationship, bringing the model closer to the Calvo
(1983) model after small shocks, also improving the realism of the framework (Naka-
mura and Steinsson 2010). At the same time, the CalvoPlus framework still implies
a highly nonlinear Phillips relationship, with a slope that increases even faster than
the baseline for similar increases in the inflation rate. This happens because, as the
shocks become larger and the frequency of price adjustment increases, the share
of price-adjusters paying the adjustment costs increases mechanically, bringing the
model closer to the canonical Golosov and Lucas (2007) framework. The increase in
this share leads to an additional source of nonlinearity in the Phillips relationship.
This higher nonlinearity further reduces the sacrifice ratio of disinflation in CalvoPlus
models with higher Calvo parameters, thus making a stricter anti-inflationary stance
optimal.

Alternative parameterizations. Panel (a) of Figure 9 contrasts the target relationship
between annualized inflation and the output gap (on impact) under Ramsey optimal
policy in the baseline model with alternatives with varying degrees of persistence of
the cost-push shock (ρτ = 0.75, 0.99); and with alternative values of the elasticity of
substitution parameter (ϵ = 3, 11). It also shows straight lines with slope −1/ϵ for ϵ =
3, 7, 11. The figure shows that (i) the target relationship is influenced by the persistence
of the underlying shock, but the variation is quantitatively small. Furthermore, (ii)
the elasticity of substitution plays a key role in determining the slope of the target
relationship. For small shocks, the slope of the target relationship is quantitatively
close to, albeit slightly higher than −1/ε, which is the slope of the target rule, the
relationship between inflation and the change in the output gap, in the linearized
Calvo model. Lastly, (iii) the qualitative features of the nonlinearity after large shocks
are robust: it is optimal to strike while the iron is hot for a wide range of parameter
values.

Panel (b) of Figure 9 shows the robustness of the Phillips relationship. The figure
reports the relationship between the impact effect of annualized inflation and the

ECB Working Paper Series No 3068 31



(a) Target relationship (b) Phillips relationship

FIGURE 9. Robustness of the target and Phillips relationships for alternative parameters

The figures recreate the relationship between inflation and output gap under optimal policy on impact
after cost-push shocks (target relationship, panel a) and Taylor rule on impact after monetary policy
shocks (Phillips relationship, panel b) for alternative parameter values. They show sensitivity to various
elasticity of substitution parameters (ϵ = 3, 11) and various persistence values of the cost push shock
(ρτ = 0.75, 0.99).

impact output gap for different i.i.d. monetary policy shocks of varying sizes under
the Taylor rule as panel (b) of Figure 7. It reports how the relationship changes when
varying the elasticity of substitution parameter ϵ = 3, 11.35 The figure shows that the
relationship is robust and stays nonlinear across the relevant parameter space.

5. Optimal monetary policy: additional results

We now proceed to investigate additional results: optimal long-run inflation, optimal
monetary policy to an aggregate productivity shock, and time-inconsistency of the
Ramsey optimal monetary policy.

5.1. The steady state under the optimal policy

The solution of the Ramsey planner’s problem has a steady state featuring a slightly
positive inflation of 0.07%.36 This is different from the standard New Keynesian model
with Calvo pricing (Galí 2008), where the optimal inflation in the Ramsey steady state
is zero. The value of inflation in the Ramsey steady state in the menu cost model is
very close to the value of steady-state inflation that maximizes steady-state welfare,
which in turn is also very close to the value of inflation that minimizes the frequency
of price adjustments.

What explains the positive optimal inflation? The key factor is the asymmetry of
the profit function (18). For a firm, a negative price gap is more undesirable than a
positive price gap of the same size because a negative price gap −x leads to a much
35We recalibrate the menu cost and the idiosyncratic quality shock volatility such that the steady state

frequency stays constant across calibrations and it generates 20% frequency at 10% inflation.
36In our numerical exploration, we have only found a single steady state.

ECB Working Paper Series No 3068 32



FIGURE 10. Steady-state price-gap density.

The figure displays the steady-state price-gap density g(x)with zero inflation. The dashed yellow line
indicates the mass of firms at the upper threshold of the (S, s) band.

larger sales increase at a markup loss of −x, while the positive price gap x leads to only
somewhat smaller sales drop at a markup gain of x. This implies that the (S, s) band
is asymmetric: the lower threshold st is closer to the optimal price than the upper
one St (see Figure 10). Thus, in the zero inflation steady state, there is more mass of
firms close to the lower threshold of the inaction band than to the upper threshold.
As a result, there are more upward than downward price adjustments. Small positive
inflation raises the optimal reset price p∗ and shifts the (S, s) band leftwards and thus
reduces the number of upward pricemovements bymore than it increases the number
of downward price movements. The frequency of price adjustments decreases and,
with it, the distortions caused by menu costs. Quantitatively, this effect is small but
not negligible.

5.2. Timeless optimal monetary response to TFP shocks

Next, we consider TFP shocks, which affect the efficient allocation. In the standard
New Keynesian model with Calvo prices, the response to such shocks is characterized
by strict price stability: the central bank steers real interest rates to replicate the path
of natural interest rates, which leads to inflation and the output gap remaining at zero.
This is commonly known as the “divine coincidence” (Blanchard and Galí 2007).

A version of the divine coincidence also holds in our economy.37 As we have shown
in Section 5.1, the Ramsey plan features a positive level of trend inflation in the long
run. In response to a TFP shock, optimal policy keeps inflation constant at this level:

37We thus generalize to the case of heterogeneous firms the finding of Nakov and Thomas (2014) of a
divine coincidence in response to TFP disturbances when pricing is state-dependent.
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PROPOSITION 4. The timeless Ramsey policy keeps inflation constant at steady state level in
response to aggregate TFP shocks.

PROOF. See Appendix C.

As inflation remains constant, the frequency of repricing and the price gap dis-
tribution also stay constant. Strict targeting of the optimal steady-state inflation rate
thus simultaneously minimizes inefficient output fluctuations (the average markup
gap) and the costs of nominal rigidities (markup dispersion and adjustment costs).
Notice that the shape of the Phillips curve plays no role in this result, and thus the
prescription is the same for small and large shocks.

5.3. Time-0 problem

We now turn to investigating the time inconsistency of optimal policy. To assess its
magnitude, we solve the optimal policy problem, starting from the price distribution
in the Ramsey steady state, assuming that the central bank faces no previous pre-
commitment. In this case, the Lagrange multipliers associated with forward-looking
equations are initially set to zero. This problem is often referred to as the “time-0
problem” (Woodford 2003).

The solid blue lines in Figure 11 show the time path under the optimal policy. The
labor subsidy is set to zero in this exercise, which, therefore, ceases to offset any
markup distortions caused by the firms’ market power. The steady state of the Ramsey
policy is time-inconsistent: without pre-commitment, the central bank engineers
a temporary expansion. Thereby, it raises welfare by bringing output closer to its
efficient level at a cost of elevated pricing distortions arising from the higher inflation.

The dashed red line on Figure 11 shows the equivalent time-0 response in the Calvo
model. The figure shows that the incentive to surprise is substantially weaker in the
menu cost model: both the inflation and output gap increases are smaller relative to
the Calvo model. The reason is that the price level becomes more flexible in the state-
dependentmodel: the unexpected easing causes a sizable inflation spike, which causes
an increase in the frequency of price changes. As a result, the output gap increases by
less than it would under exogenous frequency. That is, the output boost from a given
amount of inflation is lower than under Calvo. Since, as we saw before, the central
bank’s objective function isn’t significantly different than under Calvo, the central bank
thus eases less aggressively.

There is a countervailing force that raises the time inconsistency in our baseline
model relative to the Calvomodel. Namely, due to the idiosyncratic shocks, the uniform
labor subsidy of τ = 1/ϵ is insufficient to fully offset the markups for all firms in the
steady state, as it does in the Calvo model. A time-0 optimal policy, therefore, stays
time inconsistent even with a τ = 1/ϵ labor subsidy (not shown). The optimal policy
easing in this scenario, however, is two orders of magnitude smaller than those under
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FIGURE 11. Time inconsistency of the optimal policy.

The figure compares the time-0 optimal policies in themenu cost model and in the Calvomodel. Inflation
is annualized 12π.

no labor subsidy. Therefore, this channel is too weak to counteract the opposite effect
caused by the more flexible price level detailed above.

A corollary to the negligibility of the time inconsistency with an appropriate labor
subsidy is that the analysis in the previous sections, where we adopted a timeless
perspective, would go through without any quantitatively relevant changes also if we
adopted a time-0 perspective.

6. Conclusion

This paper characterizes the Ramsey optimalmonetary policy in a canonicalmenu cost
model.We find that in the presence of large cost-push shocks, optimalmonetary policy
should commit to mitigating inflation more aggressively than what the standard New
Keynesian model prescribes. The central bank exploits the endogenous reduction in
the sacrifice ratio brought about by the increase in price flexibility in order to contain
inflation more. That is, it strikes while the iron is hot. Importantly, this nonlinearity
can be quantitatively relevant already at moderately elevated inflation rates such
as those seen during the recent inflation surge. This policy prescription diverges
markedly from that of the standard New Keynesian model with exogenous timing of
price adjustment, which fails to capture such nonlinear dynamics. When confronted
with TFP shocks, our findings indicate that the optimal policy in the menu cost model
involves a commitment to full price stability, akin to the standard New Keynesian
model.

In sum, our research underscores the importance of an aggressive anti-inflationary
policy by the central bank in the face of large shocks. By committing to policies that
curb inflation and stabilize the repricing frequency, the central bank can deliver amore
favorable macroeconomic outcome. Our analysis is confined to the case of nominal
price rigidities in the canonical menu cost models of Golosov and Lucas (2007) and
Nakamura and Steinsson (2010); we leave for future research the interaction with wage
rigidities and assessment of optimal policy in more complex and realistic price-setting
frameworks.
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APPENDIX

Appendix A. The simplifiedmodel

This appendix lays out the simplified model and provides the proofs for the related
propositions.

Model description. As explained in the main text in Section 2.5, prices are reset
overnight in the simplified model. Thus, all dynamics are muted, such that the model
boils down to a sequence of static models.38 For this reason, we remove the time
subscript in the simplified model.

As explained there, and after removing a number of trivially redundant equations
and variables, the model boils down to the following eight equations, which define
an equilibrium in nine variables w,π,C,N, s, S, g0, gc(x), p∗, leaving the policymaker
with one degree of freedom to choose π:

ep
∗

=
ϵ

(ϵ − 1)
(1 − τ)w, (A1)

(ep
∗

)
1−ϵ

− (1 − τ)w(ep
∗

)
−ϵ
− η = (e(p

∗+s)
)
1−ε
− (1 − τ)w(e(p

∗+s)
)
−ϵ, (A2)

(ep
∗

)
1−ϵ

− (1 − τ)w(ep
∗

)
−ϵ
− η = (e(p

∗+S)
)
1−ε
− (1 − τ)w(e(p

∗+S)
)
−ϵ, (A3)

gc (x) =
1
σ
ϕ(

x + π + p∗

σ
) , (A4)

w = C, (A5)

g0 = 1 − ∫
S

s
gc(x)dx, (A6)

1 = ∫
S

s
e(x+p

∗)(1−ϵ)gc (x)dx + g0ep
∗(1−ϵ), (A7)

N = C(∫
S

s
e(x+p

∗)(−ϵ)gc (x)dx + g0ep
∗(−ϵ)

) + ηg0. (A8)

In the above, as in the main text, we define the distribution and value functions as
a function of the price gap x, as is common in the state-dependent pricing literature.
However, for the analysis of the simplified model, it is convenient to rather define
them as a function of the price level p ≡ x+ p∗. The Ss bands will also be re-normalized
accordingly. After this change of variable, the system reads:
38Alternatively, the static model version can be seen as a particular case of the complete model in

which we set β = 0 and assume that the initial distribution is such that all firms have set the same price
last period (gc

−1(x) = 0, g0−1 = 1, p∗−1 = 1)
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∗

=
ϵ

(ϵ − 1)
(1 − τ)w, (A9)

(ep
∗

)
1−ϵ

− (1 − τ)w(ep
∗

)
−ϵ
− η = (es)1−ε − (1 − τ)w(es)−ϵ, (A10)

(ep
∗

)
1−ϵ

− (1 − τ)w(ep
∗

)
−ϵ
− η = (eS)1−ε − (1 − τ)w(eS)−ϵ, (A11)

gc (p) =
1
σ
ϕ(

p + π
σ
) , (A12)

w = C, (A13)

g0 = 1 − ∫
S

s
gc(p)dp, (A14)

1 = ∫
S

s
ep(1−ϵ)gc (p)dp + g0ep

∗(1−ϵ), (A15)

N = C(∫
S

s
ep(−ϵ)gc (p)dp + g0ep

∗(−ϵ)
) + ηg0. (A16)

Note that the firm’s decisions are much simpler than in the full model, since they
are static. The reset pricemaximizes firms’ current profits by setting a constantmarkup
(A9). Furthermore, firms keep their (logged quality-adjusted real) price p unchanged
as long as current profits exceed profits under the optimal price p∗ minus the menu
cost, that is when ∆Π(p) ≡ Π(p) − (Π (p∗) − ηw) > 0. ∆Π(p) has exactly 2 positive
roots.39 One root is smaller than p∗(s) , and one root is larger than p∗(S) and the
function ∆Π(x) is positive between them. Thus, these two roots define the Ss bands,
which characterize the optimal update decision.

Phillips curve. Wenow showhowwe derive the Phillips curve displayed in Proposition
1. First, we use equations (A12)-(A14) to eliminate g0, w and gc(p) from equations (A9),
(A10), (A11) and (A15). Then we use the resulting version of (A9) to eliminate p∗ in the
remaining 3 equations. This leaves us with the following equations:

(
ϵ

ϵ − 1
(1 − τ)C)

1−ϵ
− ((1 − τ)C)1−ϵ − η = eS(1−ϵ) − (1 − τ)CeS(−ϵ), (A17)

(
ϵ

ϵ − 1
(1 − τ)C)

1−ϵ
− ((1 − τ)C)1−ϵ − η = es(1−ϵ) − (1 − τ)Ces(−ϵ). (A18)

1 =
⎡
⎢
⎢
⎢
⎢
⎣

∫

S

s
e(p)(1−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (

ε (1 − τ)
ε − 1

C)
1−ϵ
[1 − ∫

S

s

1
σ
ϕ(

p + π
σ
)dp]

⎤
⎥
⎥
⎥
⎥
⎦

,(A19)

The first two equations implicitly define the functions s(C,τ) and S(C,τ). A sim-
ple closed-form solution for these limits exists if ε = 2. For ε = 3 and ε = 4 a more
cumbersome closed-form solution exists. Beyond that we have not found any closed
39To see this consider the function ∆Π(p)(ep)ε. It is positive at p = p∗, negative at p = 0 and at p→∞,

continuous and concave for positive p. Thus it has 2 roots.
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form solution. Plugging those two ex- or implicit functions into the last equation, we
arrive at the Phillips curve in Proposition 1. That is, we have compressed equations
(A9)- (A15) into one single equation relating inflation and output – the Phillips curve:

1 =
⎡
⎢
⎢
⎢
⎢
⎣

∫

S(C,τ)

s(C,τ)
ep(1−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (

ε (1 − τ)
ε − 1

C)
1−ϵ
[1 − ∫

S(C,τ)

s(C,τ)
1
σ
ϕ(

p + π
σ
)dp]

⎤
⎥
⎥
⎥
⎥
⎦

(A20)
Note that the terms C and τ only appear as the product C(1 − τ) in this expression.

Thus, if we express this Phillips curve in terms of the log of C, π(log(C);τ) changes in
τ lead to parallel horizontal shifts. To see this, consider a particular combination of
π̄, C̄, τ̄ satisfying the above Phillips curve. Now consider a different level of τ such that
(1 − τ) = (1 − τ̄)x. To satisfy the above equation for π = π̄, it must be that C = C̄/x. Thus
log(C) = log(C̄) − log(x). This is a parallel horizontal shift of the function π(log(C);τ).

Welfare. Finally, we prove Proposition 3. The central bank’s objective is given by the
household’s utility function,

U = log(C) −N (A21)

That is, in the simplified model there is no difference between the planner having
commitment or not.

Using first the labor-market clearing condition (A16) to eliminate N in the utility
function, and then the definition of frequency (A14) to eliminate g0 and then the
distribution (A12) to eliminate gc, we arrive at the following.

U = log(C) − C(∫
S

s
ep(−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (1 − ∫

S

s

1
σ
ϕ(

p + π
σ
)dp) ep

∗(−ϵ)
)

−η(1 − ∫
S

s

1
σ
ϕ(

p + π
σ
)dp) (A22)

Using the firms’ reset price (A9) to eliminate w in the Ss conditions (A10), (A11) we
get:

ep
∗(1−ϵ)

−
ϵ − 1
ϵ

ep
∗(1−ϵ)

− η = es(1−ε) −
ϵ − 1
ϵ

es(1−ϵ), (A23)

ep
∗(1−ϵ)

−
ϵ − 1
ϵ

ep
∗(1−ϵ)

− η = eS(1−ε) −
ϵ − 1
ϵ

eS(1−ϵ), (A24)

Equations (A23), (A24), and the definition of the price level (A15) together implicitly
define functions s(π), S(π) and p∗(π). Plugging these into the welfare function (A22)
we arrive at the expression in the text:

ECB Working Paper Series No 3068 41



U = log(C) − C(∫
S(π)

s(π)
e(p)(−ϵ)

1
σ
ϕ(

p + π
σ
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S(π)

s(π)
1
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ϕ(
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)dx) ep

∗(π)(−ϵ)
)
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1
σ
ϕ(

p + π
σ
)dp] (A25)

This welfare function depends only on inflation and consumption. In the Calvo
case without idiosyncratic shocks, this representation of the welfare function, when
approximated to second order, yields the well-known loss function − 12 [ĉ

2
+ ϵ ( 1−θθ ) π̂

2
]

(see Galí 2008) where the ’hat’ denotes deviation from the deterministic steady state.
In the menu cost model which we are interested in here, we can decompose the

welfare gap relative to the efficient allocation into 3 terms:

U −Ueff = log(C) − C − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup gap
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= − logµ − (
1
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Markup dispersion

− ηg0
°

.

Adjustment costs

Appendix B. Welfare decomposition

This appendix proves Proposition 2. It starts by proving three lemmas. The first de-
scribes the relationship between output and the average welfare-relevant markup,
the second the relationship between price and markup dispersion and the third char-
acterizes the efficient allocation. We also suppress time subscripts for notational
convenience.

LEMMA A1. Let the average welfare-relevant markup µ ≡ (∫ µ( j)1−ϵdj)
1

1−ϵ , where the
welfare-relevant markup is the relative price of firm j divided by its welfare-relevant marginal
cost: µ( j) = P( j)/P

WRMC( j) , and WRMC( j) ≡ wA( j)/A. Then in any market equilibrium there is
a relationship between average welfare-relevant markup and the output:

logY = logA − logµ (A26)

or equivalently

Y =
A
µ

(A27)
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PROOF. In the proof, we first derive the real welfare-relevant marginal cost and define
its “aggregate component” that is common across firms. We show that this aggregate
component is what affects the average welfare-relevant markup. Then, we derive an
expression for the average efficient markup gap, which proves the lemma.

The real welfare-relevant marginal cost of firm j is

WRMC( j) =
∂ (wN( j))
∂Y( j)

=
wA( j)
A

,

where we have used that N( j) = A( j)Y( j)/A.
Let the common real welfare-relevant marginal cost wrmc be defined as

wrmc ≡ (WRMC( j)/A( j)) = (w/A) = Y/A, (A28)

Where we used the labor-market clearing condition eq. (7) and the definition of output
Y = C which together ensure that w = Y .

The welfare-relevant markup µ( j) is the relative price divided by the the real
welfare-relevant marginal cost:

µ( j) =
P( j)
P
/
wA( j)
A

=
P( j)
A( j)P

/
w
A
=
ep( j)
wrmc

,

where p( j) is the logarithm of the quality-adjusted relative price.
The average welfare-relevant markup µ is

µ = (∫ µ( j)1−ϵdj)
1

1−ϵ
=

⎛

⎝
∫

ep( j)(1−ϵ)

wrmc1−ϵ
dj
⎞

⎠

1
1−ϵ

=
1

wrmc
(∫ ep( j)(1−ϵ)dj)

1
1−ϵ
=

1
wrmc

,

(A29)
where we used the observation that the average quality-adjusted relative price is one
(eq. 6) in equilibrium.

The lemma follows from equations (A28) and (A29).

We define the complete density g(p) ≡ gc(p) + g0δ(p), which includes both the
continuous term gc(p) defined in equation (20) and the dirac delta δ(p) times the
frequency g0 defined in equation (21). The second lemma shows the relationship
between price dispersion and markup dispersion.

LEMMAA2. Let the dispersion of the quality-adjusted relative prices be ζp ≡ ∫ ep(−ϵ)g(p)dp.
Let the markup dispersion be ζµ ≡ ∫ (µ(p)/µ)−ϵg(logµ(p) − logµ)dp. Then

ζp = ζµ. (A30)
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PROOF.

ζp = ∫ ep(−ϵ)g(p)dp = ∫ e(logµ(p)+logwrmc)(−ϵ)g(logµ(p) +wrmc)dp =

∫ e(logµ(p)−logµ)(−ϵ)g(logµ(p) − logµ)dp = ζµ

And the third lemma calculates output and labor under the efficient allocation.
The lemma implies that the efficient output fluctuates with aggregate productivity but
is independent of demand shocks as well as of cost-push shocks.

LEMMA A3. Let Y e be the efficient output and Ne be the efficient labor., then

Ne =1,

Y e =A.
(A31)

PROOF. We obtain the efficient output as the solution to a social planning problem.
The problemmaximizes household welfare in equation (1) subject to (i) the aggregate
consumption equation (3), (ii) aggregate labor supply in (Nt = ∫iNt( j)) and (iii) product-
level production functions in (10) with respect to product-level consumption and labor
(Ct( j),Nt( j), j ∈ [0, 1], t = 0, 1, 2, . . . ).

After some algebra, the optimization problem simplifies to

max
Nt( j)

∞
∑

t=0
βt log [At (∫ Nt( j)

ϵ−1
ϵ di)

ϵ
ϵ−1
] − ∫ Nt( j)di,

subject to ∫ Nt( j)di = Nt.
It is straightforward to see that the optimization problem implies that the efficient

labor supply is equal across products (Net ( j) = N
e
t , for all t = 1, 2, . . . ). Furthermore,

optimality requires that Net = 1 for all t = 1, 2, . . . . From this, it is clear that Y et = AtN
e
t =

At.

COROLLARY A1. The efficient product-level consumption (Ce( j)) varies across products j
inversely proportional to the product-level quality, in particular

Ce( j) =
ANe

A( j)
.

Under perfect foresight, the efficient real interest rate is implicitly defined by the Euler
equation after substituting in efficient consumption:

ret = − logβ − (1 − ρA) logAt

With Lemmas A1, A2, and A3, we are ready to prove Proposition 2. It is repeated
here for convenience.
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PROPOSITION A1. Let U −Ue be the central bank’s utility gap relative to the utility under
efficient allocation expressed in efficient-consumption-equivalent units. The utility gap can
be expressed as a function of the average welfare-relevant markup (µ), the markup dispersion
(ζµ), and price adjustment costs as

U −Ue = − logµ − (
1
µ
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup

−
1
µ
(ζµ − 1)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Markup dispersion

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Misallocation

− ηg0
°

Adjustment costs

, (A32)

where the markup dispersion is ζµ ≡ ∫ (µ( j)/µ)−ϵg(logµ( j) − logµ)dj, and ηg0 are the
price adjustment costs in labor units.

PROOF. We can express the difference between utility (U) from the utility in the effi-
cient equilibrium (Ue) as

U −Ue = (logC −N) − (logCe −Ne)

= (logY −N) − (logA − 1)

= − logµ −
Y
A ∫

ep(−ϵ)g (p)dp − ηg0 + 1

= − logµ − (
1
µ
ζ
µ
t − 1) − ηg

0

= − logµ − (
1
µ
− 1) −

1
µ
(ζµ − 1) − ηg0

where Ue is the utility in the efficient equilibrium. The first step of the derivation uses
the definition of output Y = C and the efficient output Y e = A. The second step uses
Lemma A1 and the labor market equilibrium (23). The third step uses Lemma A2.

Appendix C. Response to TFP shocks

This appendix proves that, in response to a TFP shock, optimal timeless commitment
policy keeps inflation at its steady-state level πt = π.

The central bank’s problem is:

max
{gct (⋅), g

0
t ,Vt(⋅),Ct,Nt,

wt, p∗t , st,St,π
∗
t }
∞
t=0

∞
∑

t=0
βt (logCt −Nt)

subject to

wt = Ct,

Nt =
Ct
At
(∫

St

st
e(x+p

∗

t )(−ϵt)gct (p)dx + g
0
t e
(p∗t )(−ϵ)) − ηg0t
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Vt(x) = Πt(x) +
Λt,t+1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

Vt+1(x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′ +

Λt,t+1
⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(Vt+1 (0) − ηwt+1)] ,

Vt (st) = Vt (0) − ηwt,

Vt (St) = Vt (0) − ηwt,

0 = Π′t(0) +
Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1) .

gct (x) =
1
σ
∫

St−1

st−1
gct−1(x−1)ϕ(

x−1 − x − π∗t
σ

)dx−1 + g0t−1ϕ(
−x − π∗t

σ
) ,

g0t = 1 − ∫
St

st
gct (x)dx,

1 = ∫
St

st
e(x+p

∗

t )(1−ϵ)gct (x)dx + g
0
t e
(p∗t )(1−ϵ).

We now transform it in a convenient fashion. First, normalize the constraints
involving Vt(x) by At and substitute for the wage wt = Ct and the discount factor
Λt,t+1 = β

Ct
Ct+1 . With this, the constrains involving Vt(x) become:

Vt(x)
At

=
Ct
At
(exp (xt + p∗t ))

1−ϵ
−
Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+β
At+1
At

Ct
Ct+1

1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

Vt+1(x′)
At+1

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′

+
At+1
At

β
Ct
Ct+1

⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(
Vt+1 (0)
At+1

− η
Ct+1
At+1
)] ,

Vt (st)
At

=
Vt (0)
At

− η
Ct
At
,

Vt (St)
At

=
Vt (0)
At

− η
Ct
At
,

0 = (1 − ϵ)
Ct
At
(exp (xt + p∗t ))

1−ϵ
+ ϵ

Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+
1
σ
β
At+1
At

Ct
Ct+1

∫

St+1

st+1

Vt+1(x′)
At+1

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+
1
σ
β
At+1
At

Ct
Ct+1

(ϕ(
−St+1 − π∗t+1

σ
) −ϕ(

−st+1 − π∗t+1
σ

))(
Vt+1(0)
At+1

− η
Ct+1
At+1
) .
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Second, define Vt(x)
At ≡ V̂t(x), so that these constrains become

V̂t(x) =
Ct
At
(exp (xt + p∗t ))

1−ϵ
−
Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+β
Ct
At
At+1
Ct+1

1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

V̂t+1(x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′

+β
Ct
At
At+1
Ct+1

⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(V̂t+1(0) − η
Ct+1
At+1
)] ,

V̂t (st) = V̂t (0) − η
Ct
At
,

V̂t (St) = V̂t (0) − η
Ct
At
,

0 = V̂ ′t (0) = (1 − ϵ)
Ct
At
(exp (xt + p∗t ))

1−ϵ
+ ϵ

Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+
1
σ
β
Ct
At
At+1
Ct+1

∫

St+1

st+1
V̂t+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+
1
σ
β
Ct
At
At+1
Ct+1

(ϕ(
−St+1 − π∗t+1

σ
) −ϕ(

−st+1 − π∗t+1
σ

))(V̂(0) − η
Ct+1
At+1
) .

Finally, define Ĉt = Ct
At . The central bank’s problem becomes

max
{gct (⋅), g

0
t , V̂t(⋅), Ĉt,

wt, p∗t , st,St,π
∗
t ,Lt}

∞
t=0

∞
∑

t=0
βt (log (Ĉ) + log (At) − Lt)

V̂t(x) = Ĉt (exp (xt + p∗t ))
1−ϵ
− Ĉt(1 − τt)Ĉt (exp (xt + p∗t ))

−ϵ

+βĈtĈ−1t+1
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

V̂t+1(x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′

+βĈtĈ−1t+1
⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(V̂t+1(0) − ηĈt+1)] ,

V̂t (st) = V̂t (0) − ηĈt,

V̂t (St) = V̂t (0) − ηĈt,

0 = V̂ ′t (0) = (1 − ϵ)Ĉt (exp (xt + p
∗
t ))

1−ϵ
+ ϵĈt(1 − τt)Ĉt (exp (xt + p∗t ))

−ϵ

+
1
σ
βĈtĈ−1t+1∫

St+1

st+1
V̂t+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+
1
σ
βĈtĈ−1t+1 (ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(V̂(0) − ηĈt+1) .
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Nt = Ĉt (∫
St

st
e(x+p

∗

t )(−ϵt)gct (p)dx + g
0
t e
(p∗t )(−ϵ))

gct (x) =
1
σ
∫

St−1

st−1
gct−1(x−1)ϕ(

x−1 − x − π∗t
σ

)dx−1 + g0t−1ϕ(
−x − π∗t

σ
) ,

g0t = 1 − ∫
St

st
gct (x)dx,

1 = ∫
St

st
e(x+p

∗

t )(1−ϵ)gct (x)dx + g
0
t e
(p∗t )(1−ϵ).

Notice that TFP At only appears in the objective in a separable way. Therefore, the
redefined Ramsey policy is independent of TFP shocks. Going back to the original
variables definition, this implies that under optimal policy Ct ∝ At and Vt(x) ∝ At
while all other variables remain constant at their steady-state values. Thus, inflation
πt also remains constant at its steady-state value.

Appendix D. Optimality condition of the reset price

If the post decision value function V(⋅) is convex, the optimal reset price is fully charac-
terized by the system of first-order conditions in Section 2.2.40 This appendix presents
the derivation of V ′t (0).

To start, we reproduce the value function presented in equation (17), which we
then rewrite usingΦ (⋅) to denote the standard normal c.d.f.

Vt(x) = Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

x − x′ − π∗t+1
σ

)]dx′)(Vt+1 (0) − ηwt+1)

Vt(x) = Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 − [Φ(
x − st+1 − π∗t+1

σ
) −Φ(

x − St+1 − π∗t+1
σ

)]) (Vt+1 (0) − ηwt+1)

Taking the derivative of Vt(x) with respect to x and reformulating, we get V ′t (x):

V ′t (x) = Π′t(x) +
Λt,t+1
σ

∂ ∫
St+1
st+1 Vt+1(x

′
)ϕ(

x−x′−π∗t+1
σ )dx′

∂x

+

Λt,t+1
σ
(ϕ(

x − St+1 − π∗t+1
σ

) −ϕ(
x − st+1 − π∗t+1

σ
))(Vt+1(0) − κwt+1)

= Π′t(x) +
Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x
dx′

+

Λt,t+1
σ
(ϕ(

x − St+1 − π∗t+1
σ

) −ϕ(
x − st+1 − π∗t+1

σ
))(Vt+1(0) − κwt+1)

40We verify convexity ex post.
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which must be evaluated at x = 0.

Appendix E. Comparison of static models and full model

This table compares the static Calvo model, the static Golosov-Lucas model and the
dynamic Golosov-Lucas model equation by equation. Note that the support of the
distribution and value functions in the dynamic model is x, while it is p in the static
model, where p = p∗ + x .
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Appendix F. Computational algorithm

This appendix explains the computational method. We use a three-step approach to
convert the original infinite-dimensional Ramsey problem into a finite-dimensional
one. First, we approximate the distribution and value functions by piece-wise linear
functions over a set of nodes. Second, we use endogenous nodes, such that both
bounds of the (st,St) band and the optimal reset price are “on the grid”. Third, given
this approximation, we evaluate integrals analytically. Step one makes the problem
finite dimensional. Steps two and three ensure that the approximation is accurate,
smooth and computationally efficient. We explain those steps in detail below.

Once we have converted the central bank’s infinite-dimensional problem into a
finite-dimensionproblem in thisway,wederive the central bank’s first order conditions.
For this we use symbolic differentiation, and in particular, Dynare’s Ramsey command.
The resulting set of first order conditions is then solved in the sequence space under
perfect foresight. Herewe employ a standardNewtonmethod using Dynare’s perfect
foresight solver command.

To determine the appropriate initial and terminal conditions, and an initial guess
for the transition paths, we need to find the non-stochastic steady state of the model.
We determine the steady state of the private equilibrium conditional on a particular
value of the policy instrument π using a standard Newton based solution method. We
then use this function and exploit the linearity of the first order conditions with respect
to the Lagrangemultipliers to convert the high-dimensional problem of solving for the
steady state into a one-dimensional problem,which is solvedwith aNewton solver. This
last step is performed by Dynare’s steady command. That is, we manually convert
the problem into a finite-dimension problem and find the steady state conditional on
a policy; the rest of the procedure uses Dynare.

The rest of the appendix explains those steps that are not straightforward appli-
cations of existing methods. It is organized as follows. First, we explain how to make
the central bank’s problem finite dimensional. For this purpose, we first define some
useful auxiliary functions in Section F.1. Thenwe transform the equilibrium conditions
to apply an endogenous grid and approximate the value and distribution functions by
a piece-wise linear function in Section F.2. Finally, we evaluate the integrals analyti-
cally in Section F.3. The result is a discrete set of equations that can conveniently be
represented in matrix form, which we summarize in Section F.4. Second, we explain
how we determine the steady state in Section F.5.

F.1. Preliminaries

To begin with, let us normalize the variable xt as

xt =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

xt
st if xt < 0
xt
St otherwise

(A33)

ECB Working Paper Series No 3068 51



Under this normalization, the optimal price is at xt = 0, the upper limit of the (S, s)
band at xt = 1 and the lower limit of the (S, s) band at xt = −1. This will later allow us to
have all critical points (st,St, p∗t ) on the grid. The law of motion of xt conditional on
not updating can be derived from xt = xt−1 − σεt − π∗t :

xt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

xt
St =

xt−1−σεt−π∗t
St =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

xt−1−σεt−π∗t
St−1

St−1
St = xt−1

St−1
St −

σεt+π∗t
St if xt > 0, if xt−1 > 0

xt−1−σεt−π∗t
st−1

st−1
St = xt−1

st−1
St −

σεt+π∗t
St if xt > 0, if xt−1 < 0

xt
st =

xt−1−σεt−π∗t
st =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

xt−1−σεt−π∗t
St−1

St−1
st = xt−1

St−1
st −

σεt+π∗t
st if xt < 0, if xt−1 > 0

xt−1−σεt−π∗t
st−1

st−1
st = xt−1

st−1
st −

σεt+π∗t
st if xt < 0, if xt−1 < 0

(A34)
We now define functions to be used in the next sections to redefine the value and

distribution functions. For compactness, let us adopt the notation where ŝt(xt) picks
the respective extremes (S, s) depending on the value of xt following (A33). For brevity,
at times we will drop the dependence on xt and just write ŝt.

Solving (A34) for xt, xt−1 and ε respectively, we obtain the following relations:

xt = xt−1
ŝt−1
ŝt
−

σεt + π
∗
t

ŝt
(A35)

xt−1 = xt
ŝt
ŝt−1
+

σεt + π
∗
t

ŝt−1
(A36)

εt =
ŝt−1xt−1 − ŝtxt − π∗t

σ
≡ h(xt−1, xt) (A37)

where we have defined h(xt−1, xt) for later use.

F.2. Approximating the distribution and value functions by piecewise linear func-
tions on an endogenous grid

Now we redefine the value and distribution functions over the variable x and approxi-
mate them by piece-wise linear functions. The original infinite-dimensional problem
of the central bank is laid out in Section 3.1. In the following, we consider each of the
equations that contain the distribution and value functions one by one.

F.2.1. Distribution

The distribution function is given by

gt(x) ≡ gct (x) + g
0
t δ(x).
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where

gct (x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
σ ∫

St−1
st−1 g

c
t−1(x−1)ϕ(

x−1−x−π∗t
σ )dx−1 + g0t−1ϕ(

−x−π∗t
σ ) , if x ∈ [st,St],

0, otherwise,
(A38)

g0t = 1 − ∫
St

st
gct (x)dx.

Now we rewrite the distribution using the newly defined re-normalized x where
x = xŝt as in equation (A33): define gct (xŝt) ≡ gct(x) and write

gct(x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

∫

1
−1

ŝt−1(x′)
σ gct−1(x

′
)ϕ (h(x′, x))dx′ + g0t−1ϕ(

−x−π∗t
σ ) , if x ∈ [−1, 1],

0, otherwise,
(A39)

g0t =1 − ∫
1

−1
gct (x) ŝt(x)dx. (A40)

To see where this comes from, note that for the latter expression for g0t we have
applied a simple change of variable to the integral. In particular, we have used the
following substitution:

∫

St

st
gct (x)dx = ∫

St

st
gct (xŝt(x))dxŝt(x)

= ∫

St

st
gct(x)dxŝt(x) = ∫

St /̂st(x)

st /̂st(x)
ŝt(x)gct(x)dx = ∫

1

−1
ŝt(x)gct(x)dx.

Next, we will also change the variable in the integral in the equation for gct(x) (A39).
This change of variable is a bit more involved. First, we re-express (A38) as

gct(x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
σ ∫

St−1
st−1 gct−1(x−1)ϕ(

x−1 ŝt−1−xŝt−π∗t
σ )d(x−1ŝt−1) + g0t−1ϕ(

−xŝt−π∗t
σ ) , if x ∈ [−1, 1],

0, otherwise,

Second, we split the integral in two parts at 0 (and we drop the second line of the
above expression for brevity)

gct(x) =
1
σ
∫

0

st−1
gct−1(x−1)ϕ(

x−1st−1 − xŝt − π∗t
σ

)d(x−1st−1)

+
1
σ
∫

St−1

0
gct−1(x−1)ϕ(

x−1St−1 − xŝt − π∗t
σ

)d(x−1St−1)

+g0t−1ϕ(
−xŝt − π∗t

σ
) if x ∈ [−1, 1],

ECB Working Paper Series No 3068 53



Now we do a change of variable: integrate over x−1 instead of x−1st−1

gct(x) = ∫
0

1

st−1
σ

gct−1(x−1)ϕ(
x−1st−1 − xŝt − π∗t

σ
)dx−1

+∫

1

0

St−1
σ

gct−1(x−1)ϕ(
x−1St−1 − xŝt − π∗t

σ
)dx−1

+g0t−1ϕ(
−xŝt − π∗t

σ
) if x ∈ [−1, 1],

Finally, pasting the two integrals together again, re-denoting x−1 by x′ and using
h(x′, x) we get expression (A39). This concludes the explanation of the change of
variables.
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FIGURE A1. This figure schematically explains the linear interpolation with an endoge-
nous grid. It shows the piece-wise linearly approximated distribution gct(x) at two
points in time, t = 1 and t = 2. The thresholds of the (S, s) band are not symmetric
around 0 and differ across time. The endogenous grid x has I grid points, which are
automatically adjusted so that half of the grid points cover the negative part of the
(s,S) band and half of them cover the positive part. In this illustrative example I = 5
(we use a larger I when solving the model). The adjustment is obtained by multiplying
the auxiliary grid x = [−1,−0.5, 0, 0.5, 1] by ŝt(x): x = xŝt

So far we have rewritten the law of motion of the firm distribution gt. We now
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introduce the approximation we rely on for gt. We approximate gc by a piece-wise
linear function with equally spaced nodes x1, . . . , xI = −1, . . . , 0, . . . , 1 with gct(x∣xi < x <
xi+1) ≈ gct(xi) +

x−xi
xi+1−xi

gct−1(xi+1)−gct−1(xi)
xi+1−xi .

Note that the auxiliary grid for x is exogenous. However, this exogenous auxiliary
grid defines an endogenous grid for x = ŝtx, which, at each t, exactly spans the (s,S)
band and has a node at 0. Figure A1 illustrates the use of linear interpolation with an
endogenous grid as we apply it here.

From now on, gct denotes the piece-wise linear approximated function, and gct(xi <
x < xi+1) denotes a linear piece of it. Thus, the functions are approximated as

gct(x) =
I−1
∑

i=1
∫

xi+1
xi

ŝt−1(x′)
σ

gct−1(xi < x′ < xi+1)ϕ (h(x
′, x)) dx′ + 1

σ
g0t−1ϕ (h(0, x)) ,

g0t = 1 −
I−1
∑

i=1
∫

xi+1
xi

gct(xi < x < xi+1)ŝt(x)dx.

Notice that in these expressions, the integrands are continuous in the interval
xi < x < xi+1 since x and x′ are of constant sign.

Also note that the distribution function is 0 outside the (S,s) band. Our piecewise
linear gct in fact is only defined over the range where the distribution has positive mass,
that is, for x ∈ [−1, 1]. This is computationally efficient.

Within this range = 1 so we can drop it from the expression above.

gct(x) =
⎡
⎢
⎢
⎢
⎢
⎣

I−1
∑

i=1
∫

xi+1
xi

ŝt−1(x′)
σ

gct−1(xi < x′ < xi+1)ϕ (h(x
′, x)) dx′ + 1

σ
g0t−1ϕ (h(0, x))

⎤
⎥
⎥
⎥
⎥
⎦

F.2.2. Other Aggregation Equations

The equilibrium conditions contain two additional aggregation equations that contain
the function g(⋅), for which we use the piece-wise linear approximation of gc(⋅). Recall
the aggregate price index and the labor market clearing condition

ep
∗

t (ϵ−1) = ∫ ex(1−ϵ)gt(x)dx,

Nt =
Ct
At
ep
∗

t (−ϵ)
∫ ex(−ϵ)gt(x)d(x) + η∫ λt(x + p∗t − σεt − π

∗
t )gt−1(x)d(x)

which we approximate as follows, after the change of variable to x,

ep
∗

t (ϵ−1) =
I−1
∑

i=1
∫

xi+1
xi

ex(1−ϵ)gct(xi−1 < x < xi+1)ŝt(x)dx + g0t ,

Nt =
Ct
At
ep
∗(−ϵ)

I−1
∑

i=1
∫

xi+1
xi

(ex(−ϵ)gct(xi−1 < x < xi+1)ŝt(x)dx + g0t−1) + ηg0t−1.
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F.2.3. Value Function

Recall the value function is

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

x − x′ − π∗t+1
σ

)]dx′)(Vt+1 (0) − ηwt+1)

We now express it in terms of x with Vt(x) ≡ Vt(xŝt):

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

xŝt − x′ŝt+1 − π∗t+1
σ

)]dx′ŝt+1

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

xŝt − x′ŝt+1 − π∗t+1
σ

)]dx′ŝt+1)(Vt+1 (0) − ηwt+1)

Note that, in equilibrium it must hold that Vt(0) − ηwt+1At+1 = Vt(−1) = Vt(1) and
V′t(0) = 0. The first two equalities are straightforward; the next subsection discusses
the latter.

After the change of variable to x′, which is analogous to the change of variable
applied to gct previously, we can rewrite Vt(x) as

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

1

−1
[ŝt+1(x′)Vt+1(x′)ϕ (h(x, x′))]dx′

+Λt,t+1 (1 −
1
σ
∫

1

−1
[ŝt+1(x′)ϕ (h(x, x′))]dx′)(Vt+1 (0) − ηwt+1)

So far, we have normalized the support of the value function. In addition, it is
convenient to normalize the value function itself. We normalize the value function by
its maximal value Vt(0), and denote the normalized value function by vt(x): vt(x) ≡
Vt(x) −Vt(0). The expression above can be re-written as:

vt(x) ≡ Vt(x) −Vt(0) = Πt(x) −Πt(0)

+

Λt,t+1
σ
(∫

1

−1
ŝt+1(x′) [Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

) −Vt+1(x′)ϕ(
0 − x′ − π∗t+1

σ
)]dx′)

+

Λt,t+1
σ
(−∫

1

−1
ŝt+1(x′) [ϕ(

x − x′ − π∗t+1
σ

) −ϕ(
0 − x′ − π∗t+1

σ
)]dx′)(Vt+1(0) − ηwt+1)

= Πt(x) −Πt(0)

+

Λt,t+1
σ
(∫

1

−1
ŝt+1(x′) [vt+1(x′)(ϕ(

x − x′ − π∗t+1
σ

) −ϕ(
0 − x′ − π∗t+1

σ
))]dx′)

+

Λt,t+1
σ
(−∫

1

−1
ŝt+1(x′) [ϕ(

x − x′ − π∗t+1
σ

) −ϕ(
0 − x′ − π∗t+1

σ
)]dx′)(−ηwt+1)

Following our approach for gc(⋅), we approximate v(⋅) by a piece-wise linear
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function with nodes x1, . . . , xI = −1, . . . , 0, . . . , 1 with vt(x∣xi < x < xi+1) ≈ vt(xi) +
x−xi

xi+1−xi
vt(xi+1)−vt(xi)

xi+1−xi .
From now on, vt denotes the piece-wise linear approximated function and vt(xi <

x < xi+1) denotes a linear piece of it. Thus, this function vt(x) is approximated as

vt(x) =Πt(x) −Πt(0)

+

Λt,t+1
σ

I−1
∑

i=1
∫

xi+1
xi

ŝt+1(x′)vt+1(xi < x′ < xi+1)(ϕ (h(x, x
′
)) −ϕ (h(0, x′)))dx′

+

Λt,t+1
σ
(−ηwt+1)∫

1

−1
ŝt+1(x′)(ϕ (h(x, x′)) −ϕ (h(0, x′)))dx′.

F.2.4. Optimality condition for the reset price

We proceed in the same way for the derivative of the value function. We start with

0 = V ′t (0) = Π
′
t(0) +

Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

where

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

=
1

√

2πσ
−π∗t+1 − x

′

σ
e
− 12(

−π∗t+1−x
′

σ )
2

,

=

ϕ(
−π∗t+1−x′

σ )

σ

−π∗t+1 − x
′

σ

After change of variable to x, this expression becomes

0 = Π′t(0) +
Λt,t+1
σ
∫

1

−1
ŝt+1(x′)Vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1) .

Now we re-express this in terms of v(x) using Vt(x) = vt(x) +Vt(0) first, and the
rearranging

0 = Π′t(x) +Λt,t+1∫
1

−1
ŝt+1(x′) (vt+1(x′) +Vt+1(0))h(0, x′)

ϕ (h(0, x′))
σ

dx′
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+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

= Π′t(x) +Λt,t+1∫
1

−1
ŝt+1(x′)vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+Λt,t+1∫
1

−1
ŝt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′Vt+1(0)

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

= Π′t(x) +Λt,t+1∫
1

−1
ŝt+1(x′)vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

−

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))Vt+1(0)

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

= Π′t(0) +Λt,t+1∫
1

−1
ŝt+1(x′)vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1)

and apply the piece-wise linear approximation of v(x):

0 = Π′t(0) +Λt,t+1
I−1
∑

i=1
∫

1

−1
ŝt+1(x′)vt+1(xi < x′ < xi+1)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) .

F.3. Solving for Integrals

Let us collect the approximated equations defined so far.

vt(x) =Πt(x) −Πt(0)

+

Λt,t+1
σ

I−1
∑

i=1
∫

xi+1
xi

ŝt+1(x′)vt+1(xi < x′ < xi+1)(ϕ (h(x, x
′
)) −ϕ (h(0, x′)))dx′

+

Λt,t+1
σ
(−ηwt+1)∫

1

−1
ŝt+1(x′)(ϕ (h(x, x′)) −ϕ (h(0, x′)))dx′,

(A41)

0 = Π′t(0) +Λt+1∫
1

−1
ŝt+1vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) ,

(A42)

gct(x) =
I−1
∑

i=1
∫

xi+1
xi

ŝt−1(x′)
σ

gct−1(xi < x′ < xi+1)ϕ (h(x
′, x)) dx′ + 1

σ
g0t−1ϕ (h(0, x)) , (A43)
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g0t = 1 −
I−1
∑

i=1
∫

xi+1
xi

gct(xi < x′ < xi+1)ŝt(x)dx, (A44)

ep
∗

t (ϵ−1) =
I−1
∑

i=1
∫

xi+1
xi

e(x)(1−ϵ)gct(xi < x′ < xi+1)ŝt(x)dx + g0t , (A45)

Nt =
Ct
At
ep
∗

t (−ϵ) ⎛

⎝

I−1
∑

i=1
∫

xi+1
xi

ex(−ϵ)gct(xi−1 < x < xi+1)ŝt(x)dx + g0t−1
⎞

⎠

+ ηg0t−1. (A46)

The integrals in all of these expressions can be computed analytically, since the
integrands consist of affine functions multiplied by expressions that have closed-form
anti-derivatives. Figure A2 illustrates this graphically for the integral in the equation
for gct(x) (A43).

We now determine the solution of these integrals, equation by equation. Given
the coefficients of the affine functions, which depend on the values of vt+1(gt−1) at
the grid points xi, we can then write the solutions as a function that is linear in the
elements of the vector vt+1(xi) (gt−1(xi)). We now explain this for the simple case of
the integral in equation A44. The other equations require more tedious algebra, which
we conveniently executed using symbolic math and which we omit here for brevity,
but are conceptually equivalent.

)(),( xxg c
t  )()( xxg c

t 

)()( xxg c
t 

)(xg c
t

)(x

-1st
-1

-0.5st
-0.5

0
0

1St
1

0.5St
0.5

Endognous grid ŝtx
Auxiliary grid x

x

FIGURE A2. This figure schematically explains the analytical evaluation of integrals,
given the linear approximation of the distribution and value functions. It shows the
piece-wise linearly approximated distribution gct(x) in blue, the normal pdf ϕ(x) in
light blue and the product of the two gct(x)ϕ(x) in orange, where x = xŝt. The orange
area thus corresponds to the term ∑I−1i=1 ∫

xi+1
xi

ŝt−1(x′)
σ gct−1(xi < x′ < xi+1)ϕ (h(x′, x))dx′

in equation (A43).
.
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F.3.1. Mass Point

The integral over an affine function f (x) from x1 to x2 is given by

∫

x2

x1
f (x)dx =

( f (x1) + f (x2))
2

(x2 − x1)

thus
I−1
∑

i=1
∫

xi+1

xi
f (x)dx =

I−1
∑

i=1

( f (xi) + f (xi+1))
2

(xi+1 − xi).

Collecting the common terms on the right-hand side we get

I−1
∑

i=1
∫

xi+1

xi
f (x)dx =

∆x
2
⎛

⎝

f (x1) + 2
I−1
∑

i=2
f (xi) + f (xI)

⎞

⎠

.

Applying this formula to equation (A44), which defines the mass point at x = 0, and
re-arranging terms we get

g0t = 1 − eTt gct (A47)

where eTt = [0.5, 1, . . . , 1, 0.5]∆x. Note that this formula corresponds to the trapezoid
rule. The blue area in Figure A1 illustrates the application of the trapezoid rule.

F.3.2. Aggregate Price Index

By the same logic, the aggregate price index in (A45) is computed as

ep
∗

t (ϵ−1) =
I
∑

i=1
(gct(xi)1i≠1dt,i,i−1,1−ε + gct(xi)1i≠Idt,i,i+1,1−ε) + g0t (A48)

where

dt,i, j,ε =
(e(ϵ)xi ŝt,i ((ϵ) (xiŝt,i − x j ŝt, j) − 1) + e

(ϵ)x j ŝt, j)

(ϵ)2 (xiŝt, i − x j ŝt, j)

and where ŝt,i ≡ ŝt(xi) and where 1i≠1 and 1i≠I are indicator functions equal to 1 when
i is different from 1 or I, that is whenever gct(xi) is evaluated at the bounds of the (S, s)
band. It plays a similar role as the values 0.5 at the two extremes of the vector eTt above.

Hence, we can re-write equation (A48) in matrix form as

ep
∗

t (ϵ−1) = dTt,1−εg
c
t + g0t (A49)

where gct is the vector collecting the values of the the distribution function gct at the
grid points and where the vector dt,1−ε is

dt,1−ε = [1i≠1dt,i,i−1,1−ε + 1i≠Idt,i,i+1,1−ε]
I

i=1
.
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Here we have adopted the notation that [xi]
I
i=1 denotes a I × 1 vector with elements xi.

F.3.3. Labor Market

Following the previous subsection, the labor market condition (A46) is computed as

Nt =
Ct
At
ep
∗

t (−ϵ) ⎛

⎝

I
∑

i=1
(gct(xi)1i≠1dt,i,i−1,−ε + gct(xi)1i≠Idt,i,i+1,−ε) + g0t−1

⎞

⎠

+ ηg0t−1

which we re-write in matrix form as

Nt =
Ct
At
ep
∗

t (−ϵ) (dTt,−εgct + g0t−1) + ηg0t−1. (A50)

F.3.4. Distribution

Once we have evaluated the integrals, the distribution function in (A43) can be written
as:

gct(x j) =
I
∑

i=1

1
2
√

2π
gct−1(xi) [1i≠1 f t,i,i−1, j + 1i≠I f t,i,i+1, j] +

1
σ

g0t−1ϕ(
−ŝt, jx j − π∗t

σ
) (A51)

where from now on, πwithout time subindex, denotes the scalar π, f t,i,̄i, j and Pt,i, j
are defined as

f t,i,̄i, j =

√

2π (Pt ,̄i, j)(erf(
Pt ,̄i, j√
2σ
) − erf(

Pt,i, j√
2σ
)) + 2σ(exp(−

Pt ,̄i, j
2

2σ2 ) − exp(−
Pt,i, j

2

2σ2 ))

∣xiŝt−1,i − x̄iŝt−1,̄i∣
,

Pt,i, j = −xiŝt−1,i + x j ŝt, j + π
∗
t .

For compactness, define

gct ≡ [g
c
t(x j)]

I

j=1

Ft ≡ [
1

2
√

2π
(1i≠1 f t,i,i−1, j + 1i≠I f t,i,i+1, j)]

I,I

j=1,i=1

ft ≡ [
1
σ
ϕ(
−ŝt, jx j − π∗t

σ
)]

I

j=1

where gct and ft are vectors with the probability mass function gct and the scaled
and shifted normal distribution at the grid points, respectively, Ft is a matrix that
captures the idiosyncratic transitions due to firm-level quality shocks and where we

have adopted the notation that [xi, j]
J,I

j=1,i=1
denotes a J × I matrix with elements x j,i.

Thus, equation A51 can be represented in matrix form as
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gct = Ftg
c
t−1 + ftg

0
t−1. (A52)

F.3.5. Value function

Once we have evaluated the integrals, and denoting the standard normal cdf byΦ(⋅)
and the central grid point by i0 (i.e. for xi0 = 0), the value function A41 can be written as

vt(x j) = Π j,t −Π j,t(0)

+Λt,t+1
I
∑

i=1

1
2
√

2π
vt+1(xi) (1i≠1(at,i,i−1, j − at,i0,i0−1, j) + 1i≠I(at,i,i+1, j − at,i0,i0+1, j))

+Λt,t+1 (−ηwt+1)(Φ(
Pt+1, j,I

σ
) −Φ(

Pt+1, j,1
σ
) −Φ(

Pt+1,i0,I
σ

) +Φ(
Pt+1,i0,1

σ
))

(A53)

where

at,i,̄i, j =

√

2π (Pt+1, j,̄i)(erf(
Pt+1, j,̄i√

2σ
) − erf(

Pt+1, j,i√
2σ
)) + 2σ

⎛

⎝

exp
⎛

⎝

−

(Pt+1, j,̄i)
2

2σ2
⎞

⎠

− exp(−
(Pt+1, j,i)2

2σ2 )

⎞

⎠

∣xiŝt+1,i − x̄iŝt+1,̄i∣
.

(A54)
For compactness, let us define

vt ≡ [vt(x j)]
I

j=1
,

Πt ≡ [Π j,t −Π j,t(0)]
I

j=1
,

At ≡ [Λt,t+1
1

2
√

2π
(1i≠1(at,i,i−1, j − at,i0,i0−1, j) + 1i≠I(at,i,i+1, j − at,i0,i0+1, j))]

I,I

j=1,i=1
,

bt+1 ≡ [Λt,t+1 (Φ(
Pt+1, j,I

σ
) −Φ(

Pt+1, j,1
σ
) −Φ(

Pt+1,i0,I
σ

) +Φ(
Pt+1,i0,1

σ
))]

I

j=1

where vt and bt+1 are vectors that evaluate the value function vt and the adjustment
probability at different grid points, Πt is the vector of profit differences, while At is a
matrix that represents the idiosyncratic transition due to firm-level quality shocks and
price updating. Thus, equation (A53) can be represented in matrix form as

vt = Πt + [Atvt+1 − bt+1ηwt+1]. (A55)
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F.3.6. Optimality condition for the reset price

After evaluating the integral, we can write the optimality condition in (A42) as

0 = Π′t(0) +Λt,t+1
I
∑

i=1
vt+1(xi)

1
2
(1i≠1ct,i,i−1,i0 + 1i≠Ict,i,i+1,i0)

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1)

(A56)

where

ct,i,̄i, j =
erf(

Pt+1, j,i√
2σ
) − erf(

Pt+1, j,̄i√
2σ
)

xiŝt+1,i − x̄iŝt+1,̄i
−

√

2
π exp(−

(Pt+1, j,i)2

2σ2 )

σ
. (A57)

We can write this equation using matrix notation:

0 = Π′t(0) + c
T
t+1vt+1

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1)

(A58)

where

ct+1 = [Λt,t+1
1
2
(1i≠1ct,i,i−1,i0 + 1i≠Ict,i,i+1,i0)]

I

i=1
. (A59)

F.4. Final equation system

Collecting the derived equations, and combining them with the remainder of the
private equilibrium conditions (which contain no infinite dimensional objects) and
the objective, we can approximate the infinite dimensional central bank problem by
the following finite dimensional problem:

max
{gct ,g0t ,vt ,Ct ,wt ,p∗t ,st ,St ,π∗t }

∞

t=0

∞
∑

t=0
βt (logCt − (

Ct
At
ep
∗

t (−ϵ) (dTt,−εgct + g0t−1) + ηg0t−1))

subject to

wt = Ct,

vt = Πt +Atvt+1 − bt+1ηwt+1,

vt,1 = −ηwt,

vt,I = −ηwt,

0 = Π′t(0) + c
T
t+1vt+1 +

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) ,

gct = Ftgct−1 + ftg
0
t−1,

g0t = 1 − eTt gct ,

ep
∗

t (ϵ−1) = dTt,1−εg
c
t + g0t .
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Here, the choice variables vt and gct are vectors of length I. The rest of the choice
variables are scalars. Note that the choice variables p∗t , st,St,π

∗
t implicitly appear in

the problem (inside the vectors and matrices At, bt, etc.)
As already explained at the beginning of this Appendix, we solve for the FOCs of

this system by symbolic differentiation. The resulting system of FOCs is then solved
in the sequence space. We next explain how we find the steady state, which serves as
initial and terminal condition for dynamic simulations.

F.5. Steady state

To solve for the steady state of the private equilibrium conditions, given a policy π̄, the
algorithm is as follows. We rely on steady-state relationships w = C, and R = (1 + π)/β
and π = π∗. We start with a guess for the real wage w, the optimal rest price p∗, and
the bounds of the (S, s) band s and S then:
a. Compute consumption C = w.
b. Using π = π∗ = π, C and the 4 initial guesses, solve for that stationary value function

using the Bellman equation and the stationary distribution using the law of motion
of the distribution. Both have closed-form solutions given the guesses.

v = (I −A)−1 (Π − bηw) ,

gc = (I − F + feT)
−1
f ,

g0 = 1 − eTgc

c. Compute the residuals of the 4 remaining equations

vt,1 = −ηwt,

vt,I = −ηwt,

0 = Π′t(0) + c
T
t+1vt+1 +

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) ,

ep
∗

t (ϵ−1) = hTt,1−εg
c
t + g0t .

d. Use a Newtonmethod to update the 4 guesses (w, p∗, s, S) and return to step 1, until
convergence of the residuals.

Appendix G. The CalvoPlus model

The setup follows very closely Section 2, so we introduce minimal modifications to the
notation. The menu cost now is a random variable η̃ such that

η̃ =

⎧
⎪⎪
⎨
⎪⎪
⎩

η with prob α

0 with prob 1 −α
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so the probability that a price p is adjusted is

Ωt(p) = Pr [η̃ = 0] + Pr [η̃ = η]λt(p) = (1 −α) +αλt(p).

The function λt(p) is the probability of a price change conditional on the menu
cost being η:

λt (p) = 1 [L (p) > 0]

where the difference in value between adjusting and not adjusting the price must be
higher than the menu cost – which is expressed in terms of labor cost:

L (p) =max
p′

Vt (p′) − ηwt − V (p) .

With that, the firm’s value function now is

Vt (p) = Π (p,wt,At)

+αEt [(1 − λt+1 (p − σt+1εt+1 − πt+1))Λt,t+1Vt+1 (p − σεt+1 − πt+1)]

+αEt [λt+1 (p − σt+1εt+1 − πt+1)Λt,t+1 (max
p′

Vt+1 (p′) − ηwt+1)]

+ (1 −α)Et [Λt,t+1 (max
p′

Vt+1 (p′))]

which accounts for the fact that with probability 1 − α the price can be adjusted for
free. As the menu cost is expressed in labor units, the labor market clearing condition
in equation (23) in Section 2 must be modified to

Nt =
Ct
At
∫ ep(−ϵ)gt (p)dp +αη∫ λt (p − σεt − πt) gt−1 (p)dp

such that a share α of firms for which it is worthwhile to incur themenu cost η actually
pay it. Note that now the frequency of price changes is given by

f t = ∫ Φt (p) gt−1 (p)dp = (1 −α) +α∫ λt (p − σεt − πt) gt−1 (p)dp.

The next equation to modify is the law of motion of the price density function:

gt (p) = α (1 − λt (p))∫ gt−1 (p + σεt + πt)dξ (ε)

+δ (p − p∗t )∫ [(1 −α) +αλt ( p̃)] (∫ gt−1 ( p̃ + σεt + πt)dξ (ε))dp̃.

Summing up, the objective of the Ramsey problem in Section 3.1 now is

max
{gct (⋅), g

0
t ,Vt(⋅),Ct,

wt, p∗t , st,St,π
∗
t }
∞
t=0

∞
∑

t=0
βt (logCt −

Ct
At
(∫ e(x+p

∗

t )(−ϵt)gct (p)dx + g
0
t e
(p∗t )(−ϵ)) − η[g0t − (1 −α)])
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subject to

wt = Ct,

Vt (x) = Π (x, p∗t ,wt,At) +α
Λt,t+1
σ
∫

St

st

⎡
⎢
⎢
⎢
⎢
⎣

Vt+1 (x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′ +

+αΛt,t+1
⎛

⎝

1 −
1
σ
∫

St

st
ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

dx′
⎞

⎠

[Vt+1 (0) − ηwt+1]

+ (1 −α)V (0) ,

Vt (st) = Vt (0) − ηwt,

Vt (St) = Vt (0) − ηwt,

V ′t (0) = 0,

gct (x) =
α

σ
∫

St−1

st−1
gct−1 (x−1)ϕ(

(x−1 − x) − π∗t
σ

)dx−1 +αg0t−1ϕ(
−x − π∗t

σt
) ,

g0t = 1 − ∫
St

st
gct (x)dx,

1 = ∫ e(x+p
∗

t )(1−ϵ)gct (x)dx + g
0
t e
p∗t (1−ϵ).
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