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Abstract

Overlapping portfolios constitute a well-recognised source of risk, providing
a channel for financial contagion induced by the market price impact of asset
deleveraging. We introduce a novel method to assess the market price impact on
a security-by-security basis from historical daily traded volumes and price returns.
Systemic risk within the euro area financial system of banks and investment funds
is then assessed by considering contagion between individual institutions’ portfolio
holdings under a severe stress scenario. As a result, we show how the bias of
more homogeneous estimation techniques, commonly employed for market impact,
might lead to loss estimates that are more than twice as large as losses estimated
with heterogeneous price impact parameters. Another new feature in this work
is the application of a price-at-risk measure instead of the average market price
impact to evaluate the tail risk of possible market price movements in scenarios
of different severity. Our results also show that system-level losses at the tail can
be three times higher than average losses using the same scenario.

Keywords: Price impact, fire sales, indirect contagion, overlapping portfolios, quantile
regression.

JEL Codes: G01, G12, G17, G23, G32.
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Non-technical summary

Financial institutions investing in common assets are exposed to so-called indirect con-
tagion risk, where the marked-to-market loss associated with a decline in value of over-
lapping portfolios can become a major potential threat to the stability of the financial
system. This mechanisms exposes banks and other financial intermediaries to market
risks even vis-a-vis institutions with whom they have no direct exposure or explicit fi-
nancial relationship, and constitutes an important channel through which contagion and
financial distress can traverse the system. This could start either from hefty delever-
aging of one or more distressed financial institutions, seeking to raise liquidity in short
windows of time, or outright fire-sales due to sudden asset repricing, and end up hitting
even the healthiest and most prudent market participants.

The corresponding systemic risk is therefore a function of two major factors. On the
one hand, the amount of overlapping portfolios across the financial system – that is, to
which extent financial intermediaries invest in the same assets or asset classes – which
increases the interconnectedness of the system across geographical borders, magnifying
the complexity of the system and the interdependence of its agents. On the other
hand, the price impact associated with the sale of large portfolio fractions, which may
either dampen or exacerbate indirect risk sharing depending on the asset classes which
constitute the overlaps in investments.

This work exploits historical information on daily traded volumes and prices of thou-
sands of securities held by major participants in the euro area financial markets, in
order to estimate price impacts at the level of individual ISINs. This is done by extend-
ing recent theoretical findings on non-linear price impacts and employing a non-linear
quantile regression approach. We find bonds are generally associated with lower price
impacts, which broadly contributes to a reduction in indirect risk sharing when consid-
ered in conjunction with the fact that a large fraction of euro area banks portfolios are
made up of government bonds. Nonetheless, price impact weighted overlapping portfo-
lios still show heterogeneous system-wide correlations, and high degrees of indirect risk
sharing, albeit lower than what could naively inferred by looking at nominal portfolios
only. Moreover, estimated price impacts are employed in a model of financial conta-
gion with both direct and indirect channels, which has been used before to perform
system-wide stress testing. In this context, the full value of a quantile regression ap-
proach to estimate price impacts can be exploited by repeating the impact assessment
for different quantiles of the price impact distribution. Our results provide numerical
evidence of the relevance of tail scenarios in modelling fire sales dynamics where the
impact of extreme deleveraging pressures, such as those which the financial system may
experience in times of system-wide distress, is assessed across a range of shocks to the
system and price impacts.
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1 Introduction

In the past years, a growing amount of literature has been documenting the importance
of common holdings of assets in spreading market stress via a mechanism called financial
contagion: financial institutions may be forced to sell assets to acquire liquidity amidst
distressed financial situations. The selling of some securities implies price declines
which causes losses to other institutions holding those specific securities mark-to-market
in their trading book. This mechanism may lead to a spiral of price declines and
further liquidity needs, similarly to Brunnermeier and Pedersen (2009) and Greenwood,
Landier, and Thesmar (2015).

The severity of the decline depends on the complexity of portfolio similarities, creating
deeply connected overlapping portfolios. In the post-financial crisis era, these over-
lapping portfolios are recognised as a major potential source of systemic risk. This
risk, originating from mechanisms of joint asset deleveraging, depends on a notion of
market price impact, which must consequently play a central role in the modelling of
the system-wide dynamics of the financial system. This provides a compelling motiva-
tion for an in-depth understanding of the mechanisms of market price impact, and for
deploying analytical models able to capture this source of contagion.

This paper touches upon two strands of the literature. The first is the price impact lit-
erature, defined as the change in price as a result of individual trades. One of the earlier
research on price impact was performed by Kyle (1985), in which price dynamics are
modelled following a linear equilibrium model. In this setup, three market participants
influence the price based on asymmetric information. All else being equal, the linear
price change is a function of size. The framework introduced by Kyle is a common
starting point price impact models developed at a later stage.

Further research regarding the dependence between volume and price changes consis-
tently shows decreasing impact severity per traded increment, resulting in a concave
impact (see Almgren et al. (2005) and Tóth et al. (2011)). Other research regarding
individual or independent traded volumes (see Lillo, Farmer, and Mantegna (2003), Pot-
ters and Bouchaud (2003), Gabaix et al. (2003) , Farmer, Patelli, and Zovko (2005)) also
concluded concave dependencies between traded volumes and subsequent price changes.
Huberman and Stanzl (2004) specify that a linear price change could be described as a
linear function of size, provided a constant liquidity and permanent impact, to prevent
arbitrage. Moreover, they discover also that in practice market liquidity fluctuates by
orders of magnitude, significantly affecting price change dynamics.

Bouchaud, Farmer, and Lillo (2009) study the adaptation of new information into the
price of a security and find a slow process causing prices to be affected long after
the information became public. Patzelt and Bouchaud (2018) extend this research by
analyzing the limit order book and the aggregated price fluctuations observed therein.
They find a relatively stable concave impact curve across all intra-day time scales.

The exact shape of the impact curve is further debated in several publications. For
example, Bouchaud, Farmer, and Lillo (2009) find strong evidence in favor of a square-
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root impact function from segmented meta-orders. While in Cont and Wagalath (2016)
the authors develop an econometric framework for the forensic analysis of fire sales
episodes, which is characterized by an exponential price impact form. This same ex-
ponential function has been implemented in several publications on spillover effects
and contagion due to portfolio deleveraging and fire sales (Cont and Schaanning, 2017;
Caccioli, Ferrara, and Ramadiah, 2020)). However, to our knowledge, price impact, by
means of capturing quantiles of the entire distribution in combination with an expo-
nential impact function to model contagion from large scale portfolio deleveraging, has
not been introduced yet.

The literature regarding contagion through marketable assets is the second subject that
this paper investigates. In an important publication by Shleifer and Vishny (2011) the
authors show heavily discounted prices of assets that needed to be liquidated in some
form of fire sale. Similar work for the banking sector is done by Khandani and Lo (2008),
Cont and Wagalath (2016), and Glasserman and Young (2016) and Benoit et al. (2017),
where financial institutions experience forced deleveraging as a result of a financial
shock, analysed by means of excellent surveys. The seminal papers by Allen and Gale
(2000) and Kiyotaki and Moore (2002) describe the workings of contagion, based on
balance sheet interlinkages, following small shocks originating from a specific sector of
the economy but with a spreading effect through the entire system when the market
is incomplete. Among many other contributions, this effect is also documented in the
papers by Dasgupta (2004) or Allen and Gale (2018). Following a similar approach,
Cont and Schaanning (2019) analyse the vulnerability of the European banking system
to indirect contagion as a consequence of forced portfolio deleveraging. For a more
general overview on different aspects of financial contagion discussed in the literature,
which are not directly relevant for this study, see Ahnert and Bertsch (2022)1.

Chaderina, Mürmann, and Scheuch (2018) argue that institutional investors tend to sell
liquid assets first causing trades to be focused on a specific selection of assets, which
might lead to a more pronounced price drop for liquid assets than for illiquid ones.
Similar to studies by Greenwood, Landier, and Thesmar (2015), the authors assume a
linear relation between sold assets and the subsequent price change. However, there is
abundant empirical evidence of a sub-linear price impact dependence on traded volumes
(see Bouchaud (2010) and Bershova and Rakhlin (2013)).

In contrast to these more traditional methods of point-in-time estimations, Adrian
and Brunnermeier (2011), Engle and Manganelli (2004) and the research by Adrian,
Boyarchenko, and Giannone (2019) implement quantile regression based value-at-risk
analyses. The reason for implementing a quantile regression, rather than a traditional
single point forecasting method, is that a quantile regression allows for a distribution
of predictions, providing a prediction for the events at the tail of the distribution and
not just a median or mean prediction.

1This paper discusses, for instance, the wake-up call contagion effect as another form of contagion,
whereby a crisis in one region is a wake-up call to investors that induces them to re-assess and inquire
about the fundamentals of other regions. Such updated risk assessment can lead to a contagious spread
of a financial crisis across different regions.
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The aim of our research is to incorporate the theoretical findings of non-linear price
impact relations in combination with a quantile regression approach in order to better
explain tail events in the propagation of losses due to contagion from market price
impacts. To our knowledge, we are the first in making an attempt to estimate security-
level price impact functions from individual historical prices using a non-linear quantile
regression. Using these parameters and granular securities holdings statistics, we are
able to estimate potential contagion losses in the event of system-wide or individual
liquidity needs in the financial system.

Moreover, our work is also related to work on tracing the impact of asset purchase
programmes on asset prices. Altavilla, Carboni, and Motto (2015), Eser et al. (2019),
Rostagno et al. (2021) have, for instance, investigated the impact of asset purchase
programmes and unconventional monetary policies on financial markets. These studies
distinguish between ’flow effects’ and ’stock effects’, where the first one is covering the
price effect from actual trading, the second one is capturing the impact from investors’
beliefs at the announcement of changes in the policy stance. The framework in this
paper, using traded volumes, is, therefore closer, to the estimation of flow effects under
tail events.

The rest of the paper is structured as follows. In section 2, we review existing price
impact estimation methodologies and motivate our own approach using quantile regres-
sions. Section 3 describes the dataset used in this paper. Section 4 shows results of
price impact parameter estimations at aggregate level and price impact function be-
haviour for selected trade volumes. In section 5, we use these parameters in a fire sale
contagion model to estimate endogenous market losses in a financial system of banks
and investment funds. In this exercise, we assume a constant exogenous redemption
shock for the whole investment fund sector leading to fire sales of financial assets in the
system, which in turn causes contagion effects due to overlapping portfolios.

2 Methodology

Before delving into the detailed dynamics of the spread of financial contagion via over-
lapping portfolios, one should have a good understanding of the individual components
related to this topic. This begins with the explanation of the general features of a
financial market, also known as exchange. Strictly speaking a financial market is a
place where supply of and demand for financial products come together. The financial
products usually refer to products that provide monetary finance to the supplier of a
product. For example a non-financial corporation is looking to expand their business
for which it needs some form of financing. Broadly speaking this corporation can turn
to a financial market to sell part of the company in exchange for funding (i.e. equity
funding) or acquire a loan type product such as a bond. There exist more complex fi-
nancial products that base their price on the value of a different financial product, these
are called derivatives. For the scope of this work, only bond and equity instruments are
considered.
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Originally, financial markets were physical markets where market participants came to-
gether to trade their products. Thanks to technological developments, modern financial
markets are electronic systems, mainly handled by computational algorithms. These
markets also developed a new type of trade, referred to as continuous-time double-
auction mechanism. A double auction market allows both buyers and sellers to submit
the number of financial products they desire to trade (i.e. volume) and the preferred
price against which they are willing to trade the products. This type of submission of
an order is called a limit order and is stored in the exchange’s limit order book (LOB).
A participant placing a limit order is also referred to a liquidity provider (or maker),
since they add liquidity to the market. The limit order can either be cancelled from
the order book (i.e. removed without it being traded) or accepted by another market
participant, which results in a trade. The market participant, who desires to accept an
outstanding limit order, submits a market order. A participant placing a market order
is also referred to a liquidity taker (taker for short), since they remove liquidity from the
market. At each moment in time, the highest price in the LOB offered for the purchase
of a financial product is the best bid price. Conversely, the best ask price refers to the
lowest price a product can be bought for. As mentioned above, a limit order contains
both a price and a volume (in number of securities), while a market order only specifies
a volume to be bought or sold, the price is determined by the best available price at
that moment. In case the volume of a market order is larger than the available volume
against current best price, the access volume is executed against the next best price.

The above mentioned case shows that market orders might eat into limit order volume,
when market orders come in faster than newly submitted limit orders or a substantially
large market order has been executed, the best available price in the LOB gets affected,
i.e. trades consume liquidity and impact prices. Consequently, buy trades push prices
up while sell trades drag prices down (see Bouchaud et al. (2018)). The magnitude of
the impact is, therefore, related to the volume size of the traded order. Hence, a market
participant has the incentive to carefully select the execution size, in order to minimize
execution costs, as a consequence of her trade. A simple solution is to split-up large
volumes into smaller sized orders referred to as metaorders. Much of the development of
price impact functions are built around the execution of several metaorders over a given
period of time. The following section explains the methodology behind some common
theoretical models that attempt to explain the relation between these metaorders and
the subsequent price change.

2.1 Price impact modelling

The foundation of most price impact models is derived from the linear price impact
specification described within Kyle’s framework (see Kyle (1985)). In the setup of this
model, there are three market participants, informed traders, uninformed trades, and
the market-maker. Informed traders have some knowledge of the fundamental price
of a security and try to exploit this information by trading a certain quantity of this
security, accordingly. The uninformed traders behave like a random variable and do
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not affect the price. The market-makers adjust their inventory to match the incoming
market orders. However, they do not know the fundamental price. Since the informed
traders do know the fundamental price, their objective is to maximize profits by taking
advantage of mispriced securities. Kyle (1985) assumes that the market-makers fix the
price given a linear model of overall trade volumes:

p = p0 + λv. (1)

In this context the impact coefficient, denoted by λ (known as Kyle’s lambda) is a
parameter inversely proportional to the market depth; the impact on price is then
written as:

Ψ = λv. (2)

The market-maker chooses λ to get E[p∗|v] = p, where p∗ is the fundamental price. The
informed traders are aware of the price fixing by the market-maker. Hence, they choose
a trade volume small enough not to disturb the order flow from uninformed traders.
This relation is know to provide a reliable description of the impact for small volumes
but will tend to overestimate impacts for larger volumes.

The tool presented here draws from the same underlying idea of volume dependent
price change; however, it imposes a more general specification that holds for a larger
volume domain. There is abundant empirical evidence (see e.g. Bouchaud (2010)) of a
sublinear price impact dependence on the volume. Potters and Bouchaud (2003) study
the price impact as a response to the execution of a sequence of metaorders. They
find a square-root relation between the execution size and the subsequent price change,
which is presented as

Ψ(Q) = Y σd

(
Q

Vd

)δ
, (3)

where Q is the total volume of the metaorder, Y is a numerical factor of order one, σd
describs the daily volatility, Vd denotes the daily traded volume, and δ is the parameter
that describes the concave nature of the price impact, which has been found to be
δ ≈ 0.5 < 1, resulting in a square root impact function. This representation would
provide the necessary concave shape but it requires knowledge about the sequence of
metaorders Q from individual investors. The square-root impact does not apply to
aggregated orders (see Bouchaud et al. (2018)). Since metaorders are unobserved in
the analysis of this paper, the square-root impact function is not suitable. The square
root nature of the impact function implies the possibility of arbitrarily large shocks that
are able to push the price below zero. For that reason, an exponential specification is
used (see e.g. equation (4)) in line with previous work (Schnabel and Shin (2002),
Cifuentes, Ferrucci, and Shin (2005) and Cont and Schaanning (2017)):

Ψφ(V ) = Bφ(1− e−V λφ/Bφ), (4)
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where λφ is the price impact coefficient, Bφ the corresponding impact boundary for
a given security φ, and V is the daily traded volume. This allows for a price im-
pact smoothly converging to the boundary Bφ. Morevoer, notice that equation (4) is
asymptotic to Kyle’s model in the limit of small traded volumes2.

2.2 Model assumptions

To motivate further the impact behaviour of trades on the price change, the following
assumptions are made:

• Conditional on one extra sell (buy) trade the price of a security, on average, will
move down (up) when everything else is kept constant;
• The price impact function is both sublinear in the traded volume and permanent

in time.

See Bouchaud (2010) for a more in-depth discussion. During any given trading day,
trades can generally occur in both buy and sell directions. The volumes corresponding
to these trades are referred to as the buy or sell initiated volume. Let us now assume
that both the daily sell initiated volume vs and the daily buy initiated volume vb are
identically distributed vs, vb ∼ f . For symmetric price impacts, one can simply write
the daily observed price change as

R(vs, vb) = Ψ(vb)−Ψ(vs), (5)

where vi for i ∈ (b, s) are the signed traded volumes and R(·, ·) is the daily price change
in percent.

Having access to daily unsigned traded volumes only, one would, however, be able to
observe V = vs+vb. Thus, a lack of knowledge on the individual daily vs and vb hinders
the possibility to infer the functional form of the price impact Ψ. However, one can
attempt to obtain an estimate for it. Trading days, in which the trade imbalance is large,
provide the best estimate for the price impact within this framework. In particular, it
is straightforward to realise that it is when either vs � vb or vs � vb that the observed
impact is closest to Ψ. Therefore, an estimate for Ψ can be found in the boundary of
the set of data points in the volumes-impacts plane.

It is also worth mentioning that relaxing the assumption of symmetry is also possible,
conditional on having sufficient data. In other words, there exists a trade-off between
the assumption of symmetry and the accuracy on the estimate of Ψ.

Figure 1 provides an example from simulated data points. Assuming ex-ante the func-
tional form of Ψ allows to simulate points in the volumes-impacts plane according to
(5). The set of points can be observed to be bound by Ψ, and the null impacts can be
traced back directly to (i.e. explained by) the realisation of equal buy and sell initiated
volumes during the simulated trading day. Notice, however, that the probability of hav-

2That is Ψφ(V ) = λV +O(V 2).
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ing sharp trade imbalances decreases quickly with increasing volumes. The estimation
of Ψ through the bounding curve described above is thus accurate only for (relatively)
small volumes.

Figure 1: Price impact from simulated volumes: volumes represent sell initiated traded
volumes, while returns represent the negative impact on the price return (blue dots),
price impact curve (red line).

2.3 Incomplete trade information

Consider a double auction book where market participants place quotes for selling and
buying securities at different buy and bid price levels. Trades are realised when either
an offer or a bid are matched. Crucially, it is always one side initiating the trade.

When the side initiating the trade is unknown, one still has available a number of data-
driven approaches to determine it. One early and popular approach using intra-day
data, which has been shown able to achieve high classification accuracy (Aitken and
Frino, 1996). The authors provide evidence that a volatile or trending market will
decrease the accuracy of the tick rule. It is also demonstrated that the tick rule is less
likely to accurately classify seller initiated trades and small buyer initiated trades. is the
so called tick rule. The tick rule is a simple algorithm associating buy-initiated trades
with positive changes in price ∆pt > 0, sell-initiated trades with negative changes in
price ∆pt < 0, and whichever side initiated the previous trade for trades whose price
remains unchanged ∆pt = 0.
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2.4 Intra-day estimation methods

Price impact models in this paper are motivated by theoretical research on financial
market behaviour, contagion modeling and financial stress testing.

2.4.1 Linear relation model

The simplest approach to the calibration of a security’s price impact parameter is by
estimating a linear OLS over the set of price returns and daily traded volumes. The
estimated parameter can be referred to as average impact and is denoted by λAvg.

Ψφ(V ) = λφV, (6)

where V are traded volumes in one direction. Closely related to the notion of a price im-
pact, is the market liquidity of a security. Liquidity is not directly observable, however,
it can be defined as the ease with which market participants are able to obtain funding
from the sell of securities or investment opportunities from the purchase of securities
(Brunnermeier and Pedersen, 2009). Conversely, the lack of liquidity, measures the
discount (buy trades), or premium (sell trades) associated with the price of a security
when a market order is executed (Glosten and Milgrom, 1985). A widespread indicator
of illiquidity is the Amihud illiquidity measure (Amihud, 2002), capturing the average
daily price response to traded amounts:

ILL =
1

N

N∑
t=1

|Rt|
Vt

, (7)

where Rt and Vt are the daily return and volume respectively at day t and N is the
number of trading days in a year with non-zero level of trading volume.

2.4.2 Convex hull price impact

For the case of the Convex Hull3 (CH), given the aforementioned assumptions, the price
impact is estimated via the curve bounding the returns in the volumes-impacts plane.
More specifically, we approach this problem by first computing the CH on the historical
set of data points, and then fitting the desired functional form to the first points on
the CH (where the estimation is more accurate - see previous section). The calibrated
parameter by means of the CH is referred to as the hull lambda or λCH .

Figure 2 provides an illustration. The CH provides a good estimate for the price impact
function (here again chosen ex-ante), especially for small volumes. For comparison, the
estimated linear impact is reported as well.

3The convex hull is the smallest convex polygon bounding a set of points (see Appendix for more
details).
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Figure 2: Price impacts from simulated unsigned daily volumes (arbitrary units). The
price impact curve is chosen ex-ante and is represented in red. The orange polygon is
the Convex Hull.

2.5 Quantile regression with systematic component

A pitfall of the previously described methods is that either they select the most ex-
treme outcomes on the volume-price plane, making them sensitive to outliers, or a
linear relationship between prices and volumes is not observed in our database of daily
price changes. Furthermore, a key missing component of these methods is the corre-
lation of prices. We solve this problem by including the system-level (market) return
as additional factor to explain security-level price changes defined for different security
buckets. Our approach is similar to the CoVaR methodology of Adrian and Brunner-
meier (2011)4 with the exception that we estimate the qth quantile of the security-level
price impact as a function of volumes sold and the system-level return:

R̂q
φ,t = β̂q0 (1− exp(−sφVφ,t)) + β̂q1Rsys,t, (8)

where sφVφ,t is a scaled traded volume of security φ at time t and Rsys,t is the sys-
tem return defined as the market cap weighted average of returns for country/sector
and country/sector/residual maturity buckets. For background information on quan-
tile regressions, see appendix A.1. Volumes are scaled such that for one single security,
all historical volumes range between 0 and 1: sφ · maxt Vφ,t = 1. Then, the volume-
dependent term is β̂q0 (1− exp(−sφVφ,t)) in which sφ is fixed and obtained from the
previous equation and β̂q0 is estimated using the quantile regression. Since we know
from equation (4) that λφ/Bφ = sφ, we easily derive λφ = sφ · β̂q0 , which is also reported
in our result tables and figures.

This specification makes it possible to isolate the role of individual trade volumes from
market sentiment and hence correlation of prices. This setup also encompasses equation
(4) and βq0 can also be interpreted as a bound on the price change from initiated trade
volumes. A further useful feature of this method is that we can treat the system return

4See section 3.1 of the cited paper.

ECB Working Paper Series No 2692 / August 2022 11



as a variable from a macro-financial scenario, therefore our endogenous price impacts
are independent from the scenario and depend only on the quantile chosen ex-ante.

2.6 Aggregation level of estimations

The level of aggregation is particularly important in price impact estimations. Our
estimations are based on security-level price changes and, thus, cannot be applied to
less granular portfolios. The most obvious reason for this is the different capitalization
and outstanding volumes.

Assume we have two securities A and B with market capitalization cA, cB and cor-
responding price impact functions ΨA and ΨB. The question is how to derive the
price impact function ΨA+B of the aggregate security. If an amount x is sold from the
aggregate security, we can assume that cA

cA+cB
x and cB

cA+cB
x are sold from the individ-

ual securities, respectively. This leads to individual price impacts ΨA

(
cA

cA+cB
x
)

and

ΨB

(
cB

cA+cB
x
)
. Thus, the average price impact, weighted by capitalization, becomes

ΨA+B(x) =
cAΨA

(
cA

cA+cB
x
)

+ cBΨB

(
cB

cB+cB
x
)

cA + cB
. (9)

This function is a weighted average of exponential functions and does not reduce to
an exponential function. Hence, parameters of the aggregate price impact cannot be
derived from the individual price impacts.

An alternative solution to the above problem is the construction of artificial securities.
This means that given a price history of a number of securities {pφi,t}i∈I , one can
construct an aggregate price history for an index set I as

pI,t =
∑
i∈I

cipφi∑
i∈I ci

. (10)

Having this aggregate price history, the price impact estimation method is identical.

3 Data

The empirical analysis in this paper is focused on portfolio holdings of bonds and
equities. The security’s characteristics, including the issuer information, are obtained
from the ECB’s Centralised Securities Database (CSDB). All securities are identified by
their International Securities Identification Number (ISIN). The information collected
regarding the issuers are the country of residence, the institutional sector, and the
security class. The institutional sector is in line with the 1995 European system of
national and regional accounts (ESA95), for which three major groups are selected: non-
financial corporations (S.11), financial corporations (S.12), and general government
(S.13). The securities are classified based on the ESA95 instrument classes, where the
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Number of bonds Outstanding amount
(EUR Bn)

Country (ISO code) FC GOV NFC FC GOV NFC
AT 67 17 27 39 173 17
BE 32 34 28 24 247 20
DE 486 433 66 474 1381 48
ES 139 136 19 141 907 12
FR 318 133 200 357 1533 158
IT 166 143 70 106 1616 48
NL 318 24 39 280 276 25
Total 1526 920 449 1421 6132 327

Table 1: Cardinality and outstanding amounts of bonds by country and sector (2020Q4)

Number of Outstanding amount
equities (EUR Bn)

Market cap. FC NFC FC NFC
1b 298 488 123 198
10b 145 330 465 1379
100b 33 110 971 3514
Total 476 928 1560 5090

Table 2: Cardinality and outstanding amounts of equities by capitalization and sector

following two major groups are of interest to us: debt securities AF.3, and Equity and
investment fund shares/units AF.5. Furthermore, for bonds the residual maturity, in
the form of number of days, is included in the database.

3.1 Bond market data

Market data for bonds are obtained from the ECB internal data source Market Data
Provision (MDP). This database includes daily bid and ask quote volumes from over
900 market specialists, as provided by Bloomberg with a recording period between 2018
up to the last quarter of 2020, at a daily frequency. A problem related to the analyses
of traded bonds is that the transactions of such securities commonly take place over-
the-counter (OTC), which makes it more difficult to obtain prices and volumes. To
mitigate this problem, multiple sources, reporting similar securities, are combined to
create a more complete data set with a broader coverage. In order to ensure sufficient
data quality, these different sources are combined using the highest correlation between
the reported prices and volumes. Any misreporting or larger data gaps are reduced by
optimizing the reported data from all sources.
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3.2 Equity market data

Data on equity securities are obtained from the commercial data provider Refinitiv and
the ECB Securities Holdings Statistics (SHS). The dataset from Refinitiv consists of
bid and ask prices at the end of the day, daily open and close prices, and daily traded
volumes. The data spans all trading days for the period between 2018 to 2020.

The SHS dataset provides information on security-level holdings of euro area investors.
This database includes debt securities (bonds) and equity securities.5 In addition,
a classification of SHS data by sector (SHS-S), provides information on holdings of
securities by euro area countries.

Investors and financial institutions, issuing or holding financial securities, are expected
to hold records of securities at the market value. This market value is defined as the
mid-price between the bid and ask price where the securities are quoted on markets
with a buy-sell spread (also bid-ask spread) (BIS, ECB, and IMF, 2010).

The securities that are held by financial institutions such as banks and investment funds,
have a combined observed value of EUR 19 trillion, corresponding to several millions
of securities, to which these two sectors are exposed. The distribution of the securities,
based on their observed value, follows a power law. This means that a small number of
securities cover a large portion of the total observed amount. In order to optimize the
trade-off between maximum coverage and best computational performance, a sample of
the largest 10,000 securities (by observed value) is selected, containing an aggregated
market value of EUR 5.62 trillion. This accounts for 30% of the observed valuation
covered in the SHS-S dataset.

4 Parameter estimation

In this section, statistical results from the quantile regressions are presented. The results
have been grouped by security type (i.e. bonds and equities) and sector (i.e. govern-
ment, financial, and non-financial corporations). In addition, bonds were separated into
three maturity buckets short-, medium-, and long-term bonds, and the equities by mar-
ket capitalization. The importance of grouping these securities together is to identify
risk patterns in security portfolios, without the need for estimations for each individual
security, allowing to analyse market risk for larger, more interconnected portfolios.

The rest of this section is structured as follows: firstly, in section 4.1, estimation results
are summarised by group and discussed in detail. Estimated parameters are further
analysed by exposing the price impact function to different levels of direct shocks.
The latter represents a potential direct market shock as a result of theoretical fire
sales. These shocks don’t show indirect effect from contagion, which will be included
in section 5. Secondly, in section 4.2 the implications of different liquidation horizons

5For a more detailed description of the data set, see the Handbook on securities statistics( BIS,
ECB, and IMF, 2010)
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are discussed.

4.1 Empirical estimation

Figure 3 provides a visual representation of the estimated quantile regressions on empir-
ical data for a single security. 6 In the figure, the dots represent daily traded volume,
denoted in hundred million euro, against daily returns. Each colored line is a price
impact function corresponding to an estimated quantile q from the quantile regression,
described as R̂q

φ,t in equation (8).

The unique advantage of estimating several levels of severity by means of the quantile
regression approach, in comparison with the convex hull calibration approach in the
simulated example, can be seen when comparing figure 1 with figure 3. With the
estimated quantile approaching the median, the presence of small impacts relating to
larger volumes can be traced back directly to (i.e. explained by) the realisation of
equal volumes in both buy and sell directions during a trading day. This also explains
the non-symmetrical behaviour around the median, where a small imbalance in buy
and sell pressure can result in unpredictable returns. For further use of the calibrated
parameters this research will focus on the quantile below 0.5. Moreover, as shown in
(8), an important factor in the calibration is the inclusion of a market risk component.
The correlation with other securities in the sample has an influence on the direction of
observed returns.

As each individual security might be exposed to different risks, it is important to analyse
results at the macro-level. At the same time, this will provide a picture of the robustness
of our calibration. In the following subsection the statistical results are discussed at
a macro-level grouped by relevant categories. For each category the median together
with some confidence bounds are plotted for βi, for i ∈ [0, 1], and the standard error
(SE) and the pseudo R2 are provided for each estimated quantile.

The instrument-level estimation allows to get a detailed perspective of the market im-
pact at a micro-level. Nonetheless, such a granular perspective also permits to infer
the relevance of price impact dynamics at a macro-level. Moreover, the classification
of securities allows to identify common risk factors and potential areas of concentrated
risk.

Bond estimation
Regarding the categorisation of bonds, characteristics that are considered are the ma-
turity, sector, and rating.

Sector : government (GOV), financial corporations (FC) and non-financial corpo-
rations (NFC);
Maturity : less than 2 years (2y), between 2 and 5 years (5y), and between 5 and

6Note that positive returns are excluded from the figure, since the focus of this paper is on the
trade pressure forcing the price down.
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Figure 3: Real data for a specific security and estimated price impact functions for
different quantiles.
Note: Positive returns have been excluded from the figure for better visualisation.
Source: Refinitiv (Eikon).

10 years (10y);
Credit rating : prime, high grade, upper medium grade, lower medium grade,
non-investment grade.

Since the price of a bond converges to the face value plus coupons over the course of
the bonds’ maturity, the price volatility tends to decrease over time. Hence, one would
expect to observe a decrease in the impact severity, in securities with a shorter resid-
ual maturity. Empirically, this effect can be observed when comparing the estimated
idiosyncratic risk parameter β0 for bonds with a residual maturity less than 2 years, to
bonds with a residual maturity between 5 and 10 years in figure 5 where the latter has
an impact parameter, nearly 3 times larger than the former at all quantiles.
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Figure 4: Tail impact multiplier.
Bond impact parameter β0 relative to 25th percentile β0

While the difference between sectors seems to be low when looking at the median, the
tail (i.e. q ≥ 0.05) impacts show significant differences. The severe increase in risk
when approaching the tail of the distribution is even more apparent from figure 4. The
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multiplication factor of the idiosyncratic impact parameter (i.e. βq≤0.25
0

βq=0.25
0

) indicates the
additional sensitivity in the tail compared to the sensitivity at the median. Bond im-
pacts in the tail can be at least 5 times larger compared to the 25th quantile (see Figure
4). Interestingly, the multiplication factors appear to stabilise with increasing residual
maturity. This result is important when analysing the effects of trading strategies or
when assessing potential tail events from interconnected market participants.
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Figure 5: Bond price impact parameter estimation statistics.

Bond security level impacts

Overall, market impacts related to bonds prove to be limited, a result that became clear
after exposing several bonds to a direct liquidation shock, see figure 6 for the results. In
this exercises, all bonds are subject to three levels of fire-sale severity governed by the
non-linear price impact function as described by equation (8) with the security level
estimated parameters above. There is no contagion mechanism at this stage, hence
impacts presented in Figure 6 can be interpreted as direct market impact presented in
percentages. Notably, the highest impacts can be observed in the non-financial sector,
this sector experiences an average shock 1.4 times higher than shocks to the financial
sector and 2.4 higher compared to the government sector. The direct impact for short-
term NFC bonds ranges from −0.5% to −0.75% when selling 10 and 100 Mln euro,
respectively. An impact that gets roughly 2.5 times larger for long-term bonds.

Moreover, the quantile regression shows that impacts estimated at the tail of the distri-
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Figure 6: Bond price impacts for selected amounts sold.
The rows represent the amounts sold in Mln EUR, where the amounts are 10M, 50, and
100 Mln EUR.
The columns represent maximum residual maturity in their respective buckets, where
2y: up to 2 years, 5y: between 2 and 5 years, and 10y between 5 and 10 years.

bution can be as much as 3 times larger than shocks around the 25th quantile, commonly
estimated by single point estimation models. By quick comparison of government bonds’
impact parameters (see A.4 for more detailed overview), one can observe that on aver-
age impact parameters in the tail are nearly 4 times more sever than impact parameters
estimated at the 25th quantile. For bonds with a residual maturity less than 2 years,
the parameter even exceeds 5 times the size.

One fundamental feature of bond securities is the credit rating. Rating agencies pro-
viding a credit score to individual securities, allow to explore the relevance of price
impacts across different rating categories. The credit scores used for the purpose of
this work are obtained from Standard & Poor’s (S&P). The categories considered range
from Prime (least risky), to Non-investment grade (most risky); see table A9 for a more
detailed overview of credit ratings. Due to data coverage issues, the analysis is confined
to instruments with credit ratings higher than Lower medium grade. Figure A4 shows
that there is a significant difference between the levels of credit rating. Based on the
results, an average security with a High grade credit score, has a 17% higher impact,
than an average security with a Prime rating. while the jump between High grade and
Medium grade rating increases the impact even by 40%. The most significant jump
can be observed between the Medium grade rating and the Non-investment grade rat-
ing of nearly 240%. As usually government bonds are higher rated than non-financial
corporation bonds, the lower observed impacts for bonds could be explained by the
distribution of credit ratings within the bond category.
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These estimation results provide useful insight into the market risk associated with
bond securities. While it is clear that there exists much greater tail risk, when com-
pared to the average observed market impact, the overall market impact potential of
bonds remains low. This does, however, strongly depend on the type of bond, as results
show a significant dependency on the length of the residual maturity. Furthermore,
these findings provide insights for the potential security combination to mitigate mar-
ket risks, which will be investigated in more detail in section 5.

Equity estimation
Equity securities are grouped by the size of the outstanding market capital of the
issuing firm and the firm’s sector, which is either financial corporations (FC) or non-
financial corporations (NFC). Similar to results from the bond impact estimation, the
non-financial sector has a significantly higher market sensitivity than the financial sec-
tor. This in part may be explained by the diversification of bank held assets reflected
in the bank’s equity. The estimation results for each quantile are presented in figure
7. Note that as the firm’s market capital increases, so does the resilience against mar-
ket shocks. It can also be observed that the sectors show increasingly similar impact
sizes, among firms with a large market capitalization. As apposed to the estimated
parameters for bonds, equity can reach impact coefficients up to −0.5 for NFC equities,
compared to the −0.01 for NFC bonds. The equity impact parameters in the tail can
become up to 3 times larger, compared to impact parameters around the 25th quantile
for medium and large cap. securities and even up to 4.5 time for small cap. securities,
see Figure 8. These consistently large multipliers show the potentially underestimated
market risks in more common estimation methods. While the equities present smaller
multipliers than those observed for bond securities, the much lower impact coefficients
nonetheless, could lead to exceedingly larger impacts.

Equity security level impact
Similar to the bond category, the non-financial sector pose higher risks than the finan-
cial sector equities, the differences become smaller as the size of the company increases.
The difference between the percentage impact of the two sectors can be as much as
twice as large for small cap equity, see figure 7, while the large cap equity differences
become insignificant. The size of the impact also greatly depends on the size of the
company, where small cap NFCs could experience impacts over 40%, the most severe
impact observed in large companies doesn’t exceed 12%. This suggests that holding
large cap equities is significantly less sensitive to direct market risk. However, what
cannot be concluded from these figures, is the impact due to second round effects. As
the large cap securities can be considered less risky, this also could lead to more con-
centrated investments, which will be discussed in more depth, in section 5.
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Figure 7: Equity price impact parameter estimation statistics.

4.2 Scaling properties

The discussion in previous sections has focused on daily frequencies. According to
different modelling requirements, one might however need to account for longer liquida-
tion horizons. The motivation for trading incrementally over several days rather than a
large volume at once can be found in market participants’ desire to decrease the impact
their operations have on the market. Here, liquidation horizon refers to the size of the
window over which returns are computed. Window sizes between one and twenty days
are considered in the following analysis.

The impact coefficient, λ, can be found to be inversely related to market depths so that
the accounting of different liquidation horizons τ can be done by the replacement λ→
λ√
τ
. For each instrument the price impact parameters are re-computed over the different

liquidation horizons. We find the price impact to liquidation horizon relationship is well
described by a power law:

λτ = λ1τ
γ. (11)

ECB Working Paper Series No 2692 / August 2022 20



0.05 0.10 0.15 0.20 0.25
Quantile (in %)

1

2

3

4

5
Am

pl
ifi

ca
tio

n 
fa

ct
or

Market cap. (EUR) = 1b

0.05 0.10 0.15 0.20 0.25
Quantile (in %)

Market cap. (EUR) = 10b

0.05 0.10 0.15 0.20 0.25
Quantile (in %)

Market cap. (EUR) = 100b

sector
FC
NFC

Figure 8: Tail impact multiplier equity
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Figure 9: Equity price impacts for selected amounts sold.

Here, γ denotes the scaling factor, and λτ is the impact parameter calibrated over a
window size of τ days.

Estimating the scaling factor results in a value of γ = −0.6293 with an R2 = 0.9755.
This result justifies the square root scaling presented above, also commonly employed
in the literature (Cont and Schaanning, 2017), see figure 10.

The estimation of boundaries over varying liquidation horizons can be modelled through
compounding as Bτ = 1−(1−B1)

τ , where Bτ is the boundary corresponding to a τ days
window. Alternatively, as done before, one can fit a power law to estimate a general
scaling factor from the empirical data as

Bτ = Bτ ξ (12)

where Bτ is the boundary corresponding to the liquidation horizon τ and ξ is the scaling
factor. See table 3 for the estimated factor.

The mean of the boundaries over a larger time window (up to 20 days considered here)
together with the compounded boundary and the power law fitted boundary can be
observed in figure 11. The orange line represents the compounded boundary, the green
line corresponds to the boundary based on the power law, and the blue dotted line is
the empirical boundary given a liquidation horizon.
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Figure 10: Price impact parameter calibrated over time horizons from 1 to 20 days

Table 3: Calibrated scaling parameter for the boundary

Boundaries: power law

Scaling factor ξ 0.2397
R2 0.9552

This parameter can then be used to scale the boundaries for individual securities or
at any desired level of aggregation. Modifying equation (4), by including the scaled
parameters, results in the following expression for the price impact function:

Ψτ = Bτ (1− e−vλτ/Bτ ) (13)

where Ψτ is the price impact corresponding to the liquidation horizon of τ days, λτ = λ√
τ

and Bτ is the boundary scaled using either the compound method 1 − (1 − B1)
τ or

power law estimation Bτ ξ. Figure 12 provides a visualisation of equation (13) using
both boundary scaling methods with a liquidation horizon of 20 days (orange and green
lines). The blue line in each figure is generated by equation (4), without the use of any
scaling methods, thus can be interpreted as a 1-day liquidation horizon.

The 1-day boundary is equal to 1.53%, corresponding to the average 1-day boundary.
From this value one can infer a boundary of 26.51% using compounding and 3.13%

using the power law approach for the 20 days liquidation horizon. It becomes clear in
both figures that the increased liquidation horizon doesn’t guarantee a lower impact.
The slope of the impact decreases due to the scaled lambda, i.e. the blue line has a
much steeper slope than the orange and green lines, resulting in a lower impact. How-
ever, the scaled impacts surpass the boundary of the 1-day impact, due to an increased
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Figure 11: Boundary scaling over a period of 20 days.

Figure 12: Scaled price impact function
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upper bound.

As these results present a theoretical explanation of individual scaling features, this
approach doesn’t take into account cross-impacts when liquidating multiple securities
at the same time, let alone multiple portfolios. Therefore, it is important to be cautious
with the application of price impact parameters over a longer time horizon. In the
following section, an example of an application is discussed.

5 Application for fire sales contagion analysis

This section demonstrates the usefulness of granular price impact functions. For this
purpose, we use a simplified version of the stress testing model of Sydow et al. (2021),
also see appendix A.3 for equations of the fire sale module. The aggregation method
of section 2.6 is used at issuer level in the analysis. According to our experience, fire
sale losses were driven mostly by investment funds, thus we introduce a constant 5%
redemption from all funds, without any other shock to the system. Funds react to
this liquidity shock be selling their securities in a pro rata manner. Figure 13 reports
system-level losses in percentage of total assets of banks and investment funds. We find
that the usage of homogeneous price impact parameters over-estimates fire sale losses
up to a factor of more than two. This finding is in line with Cont and Schaanning
(2017)7.
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Figure 13: System-level losses for different quantiles of price impact estimations,
comparison to homogeneous price impact parameters.

As a sensitivity check, we run the simulations for different redemption shocks as well, as
reported in figure 14. We find a similar sub-linear behaviour of system-level losses due

7See figures 14-16 in the aforementioned paper.
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to the introduced sub-linear price impact function. This leads to less than 2% losses in
terms of total assets even for an 8% redemption shock.
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Figure 14: System-level losses for different quantiles and redemption shocks.

Overlapping portfolios among different financial institutions are a major source of risk
in times of system-wide financial distress, representing an indirect channel for indi-
rect contagion to spread from institutions under pressure to other market participants
investing in the same assets. This can be induced by asymmetric information on the fun-
damental value of individual assets or asset categories, or by sudden liquidity pressures,
i.e. individual institutions might find themselves forced to liquidate large amounts of
their portfolios in relatively short windows of time. As we have discussed this process
of fire sales is associated with an impact on the price of securities subject to liquida-
tion, eventually resulting in marked-to-market losses across the system. Crucially, this
mechanism can interest not only market participants directly exposed to the distressed
institution, but also seemingly unrelated ones, regardless of geography, or financial
health, giving rise to what is often referred to as indirect contagion8.

A common analytical tool for assessing the risk of indirect contagion is the matrix
of overlapping portfolio. Given a matrix S ∈ RNB×NS of NB institutional ISIN-level
portfolios composed of investments in NS different assets, one can write the overlapping
portfolio matrix O ∈ RNB×NB as the matrixwith elements

Oij =
∑
k

min {Sik, Sjk} . (14)

8A further mechanism which contributes to indirect contagion is cross-impact. Cross-impact on
price refers to the impact on other securities and assets that might result from the liquidation of one
specific asset due to market correlations. For simplicity cross-impact is not considered in this analysis
but could be done by in a simplified manner by iterating the system-level return as in equation (8)
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Holding Statistics ].

Figure16a presents the overlapping portfolio matrixO for the 126 largest banking groups
in the euro area, showing wide overlapping investments worth multiple tens of billions
in the same assets. This suggests a pro-rata liquidation of a bank’s portfolio would have
far reaching implications for all banks across the system, which would face marked-to-
market losses on assets held at market value.

However, what equation (14) does not consider is the relevance of heterogeneity in
price impacts across different securities and asset classes. Much of banks’ portfolios
of securities are composed of low risk government bonds which can be exchanged for
liquidity with the central bank (see figure 15). As discussed in the preceding section,
these assets are generally associated with substantially more contained price impacts
which contributes to a significant reduction of system-wide risk. A weighted overlapping
portfolio matrix can instead be constructed to capture the heterogeneities inherent in
the different assets composing the institutions’ portfolios. In particular we define the
weighted overlapping portfolio OW as the matrix with elements:

OWij =
∑
k

Ψk min {Sik, Sjk} . (15)

Weighted overlapping portfolios OW are presented in figure 16b. The substantial risk
reduction played by heterogeneities in price impacts can be observed at a glance, giving
more prominence to overlaps in equity holding as opposed to overlaps in safer govern-
ment bonds which compose the bulk of banks’ portfolios in the euro area.

A similar effect can also be observed by looking at the slightly related cosine similarity
matrices presented in figure 17. Specifically, we consider a nominal cosine similarity
matrix CS ∈ RNB×NB defined elementwise as
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(b) Impact weighted overlapping portfolios

Figure 16: Weighting overlapping portfolios by security level price impacts reveals
indirect contagion poses less risk than could otherwise inferred. Here, impact in (b)
refers to quantile q = 0.05. Portfolios are those of the 126 largest euro area banking
groups reporting in SHS-G, excluding short positions for simplicity. Banking groups on
both axis are clustered by country of residence.

Nominal Price…impact…weighted

0.0

0.2

0.4

0.6

0.8
C

os
in

e…
si

m
ila

rit
y

Figure 17: Nominal and price impact weighted (q = 0.05) cosine similarity matrices
CS and CSW . Banks on both axis are clustered by country of residence. Here portfolios
do not account for short positions.
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CSij =

∑
k SikSjk

(
∑

k S
2
ik)

1
2
(∑

k S
2
jk

) 1
2

, (16)

and a weighted cosine similarity matrix CSW ∈ RNB×NB defined elementwise as

CSWij =

∑
k SikSjkΨ

2
k

(
∑

k S
2
ikΨ

2
k)

1
2
(∑

k S
2
jkΨ

2
k

) 1
2

. (17)

Notice that both CS and CSW are bounded in [0, 1] when considering long positions
only, but can extend to [−1, 1] when accounting for short positions as well.

Cosine similarity gives a metric of similarity between each pair of portfolios discounting
the absolute amount of the overall investment in the portfolio. Therefore, CS and CSW

provide an overview of the degree of diversification in portfolios of euro area banks. The
price impact weighted matrix CSW exhibits a markedly higher degree of diversification
across the system, while at the same time revealing stronger similarities for some pairs
of banks than what are instead observed in the nominal cosine similarity CS.

6 Conclusion

The aim of this paper was to analyse the effect of large scale portfolio deleveraging on
the price of market traded securities and how the corresponding shocks from overlapping
portfolios propagate through the financial system. The ability to describe these effects
allows banks and other systemically important institutions such as CCPs, to prepare
for a potential threat to the stability in the financial system. In this paper, systemic
risk is described as the combination of overlapping portfolios across the financial system
and the price impact associated with the sale of large portfolio fractions, which may
either dampen or exacerbate indirect risk sharing depending on the asset classes that
constitute overlaps in terms of investments. Based on security level bank exposures in
combination with historical daily prices and trade volumes, held by major participants
in the euro area financial markets, we were able to quantify potential cascade effects
from large scale deleveraging.

We describe the interconnected behaviour of markets by means of a non-linear price
impact quantile regression approach. The results presented in section 4.1 show that in
general bonds prove to have much lower price impacts than equity securities, allowing
investors to mitigate market risk by optimising their portfolios. In contrast to bonds,
the results show a major risk potential for small- and medium-sized non-financial cor-
poration equity. Direct shocks from this category can reach up to 40%, which could
lead to major cascade events when held in high concentrations among commonly held
portfolios. The ability of large scale investment institutions to diversify portfolios is,
therefore, crucial to limit shock propagation from fire-sales.

Results presented in section 5 show that taking into account price impact heterogeneity
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across securities alleviates the risks calculated by fire sale models. We were able to
introduce an application of a price-at-risk measure, as apposed to traditional average
market price impacts, to evaluate tail risk of possible market price movements as a
consequence of several shock scenarios with different severity. The results of this analysis
show that system-level losses at the tail can be up to three times higher than average
losses, ceteris paribus.
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Appendices

A.1 Quantile regression

This section summarizes the methodological background of quantile regressions, origi-
nally laid down by Koenker and Bassett Jr (1978). The main advantage of this method
is that it is able to estimate the quantile (instead of the mean as OLS does) of a variable
based on some explanatory variables using all observations in the sample. The proba-
bility of a random variable X not exceeding x is denoted by the cumulative distribution
function F (x) = P(X ≤ x). The q-quantile of X is defined by

F−1(τ) = inf {x : F (x) ≥ q} = x̂,

i.e. the number that X does not exceed with at least probability q. Let us call the loss
function ρq(u) = u · (q − 1{u < 0})9, the expectation of which is E (ρq(u)). It can be
shown that E (ρq(X − x̂)) is minimized in x̂ if and only if F (x̂) = q. The minimization
problem

E (ρq(X − x̂)) −→ min

reduces to a linear programming routine.

In a regression setup, the q-quantile of variable y is estimated by x′β and is denoted as

ŷq = x′β̂.

Koenker and Machado (1999) also define a goodness of fit measure for quantile regres-
sions that we use in our analysis. Using the sum of loss functions for all observations
of xi: V̂ (q) =

∑
i ρq(yi − x′iβ̂). When the model is restricted to an intercept without

explanatory variables, let the same measure denote Ṽ (q). The pseudo R2 is then defined
as an analog of R2:

R1(q) = 1− V̂ (q)

Ṽ (q)
.

A.2 Convex hull

This method initially finds the convex hull of the set of points, after which the first few
points are used to establish the upper boundary. This method draws a polygon around
the cloud of points, which intuitively can be seen as a rubber band around a set of
nails N , hammered into wood. The subset of nails that are in contact with the rubber
band is the convex hull of set N . More formally, the convex hull is the smallest convex
polygon containing the points. A polygon is defined as a combination of line segments
or edges, joined end-to-end in a cycle, in which the end points of the edges are called
vertices. The convexity of the polygon means that any line segment (p̄q) between the
two points p, q within the polygon also lies inside the polygon.

91{A} is the indicator function of event A.
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Figure A1: Convexity of a cloud of points

Lastly, the smallest polygon refers the any proper subset of the convex hull excludes at
least one point in N . This implies that every vertex of the convex hull is a point of N .

Figure A2: Complete convex hull

It can be noticed that N might have interior points that are not vertices of the convex
hull.

One of the approaches to calculating the Convex Hull is the gift wrapping (Jarvis March)
algorithm. This method consists of two stages. During the first stage, the algorithm
finds the leftmost point s comparing the x − coordinate. Since, by definition, there
are no points left of this point, it must be a convex hull vertex. This will become the
starting point of set N for the convex hull. Starting from point s with a line straight up
and turning it clockwise until it finds the first point, this will be the next convex hull
vertex. This process continues for at each vertex until it reaches point s again figure
A3.

Figure A3: Cloud of points including their convex hull vertices (yellow and blue
respectively), line segments connecting the convex hull vertices (black lines)
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A.3 Contagion model of fire sales

This appendix is an excerpt of the fire sale mechanism for overlapping portfolios in a
system of banks and funds, as introduced in Sydow et al. (2021). Banks and funds
start proportionally selling tradable assets to close liquidity gaps. In this modelling
block, banks are willing to sell only their non-eligible securities since they have access
to central bank funding using their high quality liquid assets (HQLA). We assume that
there is no endogenous price impact for HQLA.10 By contrast, funds sell all kinds of
securities holdings as they do not have access to central bank funding. Thus, they do
not discriminate between eligible and non-eligible types of assets and sell all of their
securities holdings.

Let htrd
t =

{
htrdi,φ,t

}
i,φ

denote the portfolio matrix of tradable securities at time t, by
market values, where i is the holder and φ is the security. Similarly, hred

t is the portfolio
matrix of redeemable holdings. Moreover, pt = (pφ,t)φ denotes the vector of prices of
tradable securities.

We assume that fire sales are applied to cover liquidity shortfalls proportional to the
share of tradable securities in the securities holdings portfolio.

Then, starting from time t, the fire sale algorithm proceeds as follows:

(i) Determine the supply value Sφ,t that will be sold of each security (at the final
prices). Based on the slicing hypothesis, the sale is done pro rata for the value
of each security in the initial portfolio, meaning that entity-level and aggregated
supply of φ are

si,φ =
htrdi,φ∑

ϕ(htrdi,ϕ + hredi,ϕ )
gi and Sφ =

∑
i

si,φ (18)

respectively, si,φ is the value that i wants to recover from φ. Note that the choice
of the liquidation approach, here the slicing approach, may be a crucial driver
for the magnitude of the shock transmission between sectors. For example, under
the waterfall approach (selling the most liquid assets first), the magnitude of the
shock transmission may be considerably reduced due to a reduced price impact.

(ii) Determine the new vector of prices pt+1 = (pφ,t+1)φ using the total amounts sold:

pφ,t+1 = pφ,t(1−Bφ(1− exp(−Sφλφ/Bφ))) (19)

and update the value of tradable portfolios

htrd
t+1 = htrd

t

(
pt+1

pt

)T

. (20)

10An alternative approach could be the reconstruction of HQLA from granular securities within our
simulation, which would allow for a price impact on the amount of available HQLA. However, this not
only means higher computational costs but also difficulties to assess at which point a bank would turn
to the central bank to exchange specific assets for cash.
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(iii) Find the new NAV vector p∗t+1 = (p∗i,t)i∈IF of funds, and update the value of
redeemable portfolios:

hred
t+1 = hred

t ·
(
p∗t+1

p∗t

)T

. (21)

(iv) Update internal accounting variables of entities to reflect changes of portfolio
values. Let i be a financial institution and φ a security. When we account for
the change in REA, it is the change from hi,φ,t to hi,φ,t+1 that matters. However,
when we want to account for losses only and see the impact on the total capital
we need to disentangle what is converted as cash from actual losses that stem
from the decrease in prices.

Cash holdings are updated with the amounts received after the iteration has converged:

ci,t+1 = ci,t +
∑
φ

si,φ. (22)

Note that Sφ increases due to the price declines and the iteration terminates thanks to
the finite amount of assets that can be sold and the introduction of a lower boundary
for security prices. Assuming that the whole residual liquidity need is recovered by i we
have a change in capital due to the price impact given by mi,t+1 =

∑
φ (hi,φ,t+1 − hi,φ,t).

More generally, using the change in prices we get

mi,t+1 =
∑
φ

hi,φ,t
pφ,t

(pφ,t+1 − pφ,t) . (23)
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A.4 Estimated security-level price impact parameters

Average of β0 Sector and market cap.
FC NFC

Quantiles 100b 10b 1b 100b 10b 1b

0.05 -0.1495 -0.1608 -0.2315 -0.1521 -0.2163 -0.4843
0.1 -0.1083 -0.1116 -0.1410 -0.1084 -0.1513 -0.3058
0.15 -0.0825 -0.0825 -0.0966 -0.0843 -0.1151 -0.2139
0.2 -0.0644 -0.0626 -0.0696 -0.0657 -0.0887 -0.1562
0.25 -0.0505 -0.0479 -0.0500 -0.0513 -0.0683 -0.1163
0.3 -0.0399 -0.0359 -0.0357 -0.0387 -0.0512 -0.0845
0.35 -0.0302 -0.0256 -0.0241 -0.0274 -0.0361 -0.0585
0.4 -0.0209 -0.0163 -0.0147 -0.0172 -0.0222 -0.0359
0.45 -0.0116 -0.0078 -0.0059 -0.0078 -0.0091 -0.0159
0.5 -0.0025 0.0002 0.0024 0.0016 0.0027 0.0029

Table A1: Equity estimation results for β0

Average of λ · 109s Sector and market cap.
FC NFC

Quantiles 100b 10b 1b 100b 10b 1b

0.05 -5.455 -12.141 -147.344 -3.448 -43.020 -363.363
0.1 -3.691 -8.296 -99.568 -2.212 -27.959 -241.179
0.15 -2.624 -6.093 -68.094 -1.618 -19.841 -166.081
0.2 -1.858 -4.556 -48.751 -1.158 -15.529 -119.307
0.25 -1.395 -3.410 -33.725 -0.869 -11.986 -86.113
0.3 -1.058 -2.542 -22.730 -0.637 -8.260 -60.387
0.35 -0.797 -1.819 -15.776 -0.419 -4.962 -41.038
0.4 -0.510 -1.130 -9.999 -0.240 -2.705 -23.335
0.45 -0.252 -0.528 -4.532 -0.106 -1.021 -11.227
0.5 -0.028 -0.018 0.389 0.022 0.076 0.071

Table A2: Equity estimation results, λs, multiplied by 109
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Average of β0 Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -0.0030 -0.0022 -0.0024 -0.0029 -0.0039 -0.0077 -0.0014
0.1 -0.0018 -0.0012 -0.0014 -0.0017 -0.0026 -0.0046 -0.0008
0.15 -0.0014 -0.0008 -0.0010 -0.0012 -0.0018 -0.0032 -0.0006
0.2 -0.0010 -0.0006 -0.0007 -0.0009 -0.0011 -0.0023 -0.0004
0.25 -0.0007 -0.0004 -0.0005 -0.0006 -0.0007 -0.0016 -0.0003
0.3 -0.0005 -0.0002 -0.0004 -0.0004 -0.0004 -0.0011 -0.0003
0.35 -0.0003 -0.0001 -0.0003 -0.0003 -0.0001 -0.0008 -0.0002
0.4 -0.0001 0.0000 -0.0002 -0.0001 0.0002 -0.0005 -0.0001
0.45 0.0001 0.0001 -0.0001 0.0000 0.0004 -0.0002 -0.0001
0.5 0.0002 0.0002 -0.0001 0.0001 0.0006 0.0001 0.0000

5y
0.05 -0.0045 -0.0061 -0.0053 -0.0093 -0.0063 -0.0201 -0.0050
0.1 -0.0031 -0.0035 -0.0033 -0.0054 -0.0041 -0.0122 -0.0036
0.15 -0.0024 -0.0024 -0.0023 -0.0038 -0.0029 -0.0087 -0.0028
0.2 -0.0018 -0.0018 -0.0017 -0.0027 -0.0022 -0.0063 -0.0023
0.25 -0.0014 -0.0014 -0.0012 -0.0020 -0.0017 -0.0046 -0.0018
0.3 -0.0010 -0.0010 -0.0009 -0.0015 -0.0012 -0.0034 -0.0014
0.35 -0.0007 -0.0007 -0.0006 -0.0010 -0.0009 -0.0023 -0.0011
0.4 -0.0005 -0.0004 -0.0004 -0.0006 -0.0005 -0.0014 -0.0008
0.45 -0.0002 -0.0001 -0.0002 -0.0002 -0.0002 -0.0007 -0.0006
0.5 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 -0.0003

10y
0.05 -0.0154 -0.0099 -0.0100 -0.0121 -0.0126 -0.0213 -0.0102
0.1 -0.0100 -0.0067 -0.0062 -0.0070 -0.0075 -0.0138 -0.0070
0.15 -0.0075 -0.0050 -0.0044 -0.0049 -0.0053 -0.0098 -0.0052
0.2 -0.0057 -0.0039 -0.0033 -0.0036 -0.0040 -0.0073 -0.0041
0.25 -0.0043 -0.0031 -0.0024 -0.0027 -0.0031 -0.0054 -0.0032
0.3 -0.0031 -0.0022 -0.0018 -0.0020 -0.0022 -0.0040 -0.0024
0.35 -0.0023 -0.0016 -0.0012 -0.0014 -0.0015 -0.0028 -0.0016
0.4 -0.0015 -0.0009 -0.0007 -0.0009 -0.0009 -0.0017 -0.0010
0.45 -0.0005 -0.0003 -0.0002 -0.0003 -0.0002 -0.0007 -0.0004
0.5 0.0005 0.0003 0.0003 0.0001 0.0003 0.0002 0.0003

Table A3: Bond estimation results for GOV, β0
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Average of λ · 109s Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.050 -0.030 -0.026 -0.041 -0.457 -0.181 -0.399 -0.013
0.100 -0.018 -0.015 -0.024 -0.254 -0.133 -0.237 -0.008
0.150 -0.014 -0.010 -0.016 -0.167 -0.089 -0.152 -0.006
0.200 -0.010 -0.007 -0.012 -0.110 -0.051 -0.099 0.004
0.250 -0.007 -0.004 -0.009 -0.069 -0.034 -0.063 -0.003
0.300 -0.005 -0.003 -0.006 -0.039 -0.017 -0.036 -0.002
0.350 -0.003 -0.001 -0.005 -0.012 0.002 -0.022 -0.001
0.400 -0.001 0.000 -0.003 0.012 0.008 -0.012 -0.001
0.450 0.001 0.002 -0.002 0.037 0.016 -0.003 -0.000
0.500 0.002 0.003 -0.000 0.063 0.023 0.008 0.001

5y
0.050 -0.063 -0.103 -0.107 -1.256 -0.127 -0.420 -0.050
0.100 -0.044 -0.056 -0.066 -0.709 -0.081 -0.261 -0.036
0.150 -0.034 -0.037 -0.046 -0.499 -0.058 -0.185 -0.028
0.200 -0.025 -0.029 -0.034 -0.348 -0.044 -0.133 -0.023
0.250 -0.020 -0.019 -0.024 -0.237 -0.034 -0.095 -0.018
0.300 -0.014 -0.014 -0.017 -0.150 -0.024 -0.071 -0.014
0.350 -0.010 -0.009 -0.011 -0.078 -0.016 -0.047 -0.011
0.400 -0.006 -0.005 -0.006 -0.016 -0.009 -0.025 -0.008
0.450 -0.003 -0.001 -0.001 0.036 -0.002 -0.008 -0.006
0.500 0.002 0.003 0.004 0.102 0.005 0.010 -0.003

10y
0.050 -0.201 -0.134 -0.230 -2.171 -0.362 -0.811 -0.102
0.100 -0.132 -0.089 -0.142 -1.291 -0.228 -0.491 -0.070
0.150 -0.101 -0.066 -0.102 -0.875 -0.161 -0.337 -0.052
0.200 -0.079 -0.051 -0.076 -0.616 -0.119 -0.246 -0.041
0.250 -0.059 -0.040 -0.057 -0.442 -0.090 -0.181 -0.032
0.300 -0.044 -0.029 -0.041 -0.307 -0.066 -0.131 -0.024
0.350 -0.033 -0.020 -0.028 -0.198 -0.045 -0.090 -0.016
0.400 -0.022 -0.012 -0.016 -0.090 -0.026 -0.052 -0.010
0.450 -0.010 -0.003 -0.004 -0.010 -0.006 -0.017 -0.004
0.500 0.003 0.004 0.007 0.080 0.012 0.014 0.003

Table A4: Bond estimation results for GOV, λs, multiplied by 109

ECB Working Paper Series No 2692 / August 2022 39



Average of β0 Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -0.0032 -0.0063 -0.0043 -0.0069 -0.0055 -0.0098 -0.0052
0.1 -0.0019 -0.0037 -0.0023 -0.0033 -0.0030 -0.0049 -0.0028
0.15 -0.0013 -0.0025 -0.0015 -0.0019 -0.0019 -0.0030 -0.0018
0.2 -0.0010 -0.0018 -0.0011 -0.0012 -0.0014 -0.0020 -0.0012
0.25 -0.0007 -0.0013 -0.0008 -0.0008 -0.0010 -0.0014 -0.0009
0.3 -0.0005 -0.0010 -0.0006 -0.0005 -0.0007 -0.0010 -0.0006
0.35 -0.0004 -0.0007 -0.0004 -0.0003 -0.0004 -0.0007 -0.0004
0.4 -0.0002 -0.0005 -0.0003 -0.0001 -0.0002 -0.0004 -0.0002
0.45 -0.0001 -0.0002 -0.0001 0.0001 0.0000 -0.0003 0.0000
0.5 0.0000 0.0000 0.0000 0.0003 0.0002 -0.0001 0.0001

5y
0.05 -0.0061 -0.0097 -0.0091 -0.0129 -0.0100 -0.0154 -0.0098
0.1 -0.0036 -0.0054 -0.0052 -0.0072 -0.0058 -0.0091 -0.0055
0.15 -0.0026 -0.0034 -0.0034 -0.0048 -0.0039 -0.0061 -0.0037
0.2 -0.0019 -0.0025 -0.0025 -0.0035 -0.0029 -0.0043 -0.0026
0.25 -0.0014 -0.0018 -0.0019 -0.0026 -0.0021 -0.0032 -0.0020
0.3 -0.0011 -0.0013 -0.0014 -0.0019 -0.0016 -0.0024 -0.0014
0.35 -0.0008 -0.0009 -0.0010 -0.0013 -0.0011 -0.0017 -0.0010
0.4 -0.0005 -0.0006 -0.0006 -0.0008 -0.0007 -0.0010 -0.0007
0.45 -0.0002 -0.0002 -0.0003 -0.0004 -0.0003 -0.0006 -0.0003
0.5 0.0000 0.0001 0.0000 0.0001 0.0000 -0.0001 0.0000

10y
0.05 -0.0130 -0.0183 -0.0154 -0.0196 -0.0187 -0.0323 -0.0216
0.1 -0.0077 -0.0106 -0.0090 -0.0117 -0.0109 -0.0188 -0.0125
0.15 -0.0055 -0.0069 -0.0064 -0.0082 -0.0078 -0.0103 -0.0086
0.2 -0.0041 -0.0054 -0.0047 -0.0060 -0.0058 -0.0073 -0.0061
0.25 -0.0031 -0.0041 -0.0035 -0.0043 -0.0044 -0.0053 -0.0045
0.3 -0.0023 -0.0031 -0.0026 -0.0032 -0.0034 -0.0038 -0.0033
0.35 -0.0016 -0.0023 -0.0019 -0.0023 -0.0024 -0.0025 -0.0024
0.4 -0.0011 -0.0016 -0.0013 -0.0015 -0.0016 -0.0015 -0.0016
0.45 -0.0005 -0.0009 -0.0007 -0.0007 -0.0008 -0.0008 -0.0008
0.5 0.0000 -0.0003 0.0000 0.0000 -0.0001 -0.0002 0.0000

Table A5: Bond estimation results for FC, β0
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Average of λ · 109s Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.050 -0.261 -0.232 -0.514 -0.421 -0.448 -3.172 -1.123
0.100 -0.140 -0.110 -0.252 -0.206 -0.210 -1.558 -0.652
0.150 -0.090 -0.073 -0.162 -0.112 -0.122 -0.882 -0.377
0.200 -0.063 -0.047 -0.107 -0.068 -0.081 -0.496 -0.242
0.250 -0.043 -0.034 -0.074 -0.044 -0.053 -0.276 -0.150
0.300 -0.031 -0.025 -0.049 -0.026 -0.028 -0.152 -0.098
0.350 -0.021 -0.017 -0.030 -0.012 -0.011 -0.070 -0.058
0.400 -0.011 -0.011 -0.016 0.002 0.004 -0.034 -0.026
0.450 -0.003 -0.005 -0.004 0.015 0.017 -0.014 0.003
0.500 0.006 0.000 0.009 0.028 0.030 0.007 0.028

5y
0.050 -0.279 -0.212 -0.868 -1.042 -0.739 -4.478 -2.934
0.100 -0.159 -0.124 -0.489 -0.552 -0.387 -2.770 -1.521
0.150 -0.107 -0.085 -0.335 -0.358 -0.244 -1.910 -0.963
0.200 -0.068 -0.061 -0.236 -0.254 -0.169 -1.176 -0.651
0.250 -0.049 -0.046 -0.175 -0.189 -0.111 -0.930 -0.457
0.300 -0.036 -0.034 -0.122 -0.134 -0.074 -0.752 -0.330
0.350 -0.025 -0.025 -0.086 -0.085 -0.049 -0.584 -0.231
0.400 -0.015 -0.017 -0.051 -0.049 -0.031 -0.270 -0.145
0.450 -0.004 -0.008 -0.018 -0.013 -0.013 -0.132 -0.065
0.500 0.005 -0.000 0.009 0.019 0.004 0.006 0.007

10y
0.050 -0.542 -0.359 -3.122 -1.478 -1.254 -2.841 -4.917
0.100 -0.293 -0.206 -2.088 -0.864 -0.613 -1.640 -2.501
0.150 -0.204 -0.133 -1.561 -0.612 -0.388 -1.124 -1.646
0.200 -0.144 -0.102 -1.206 -0.462 -0.275 -0.700 -1.140
0.250 -0.110 -0.075 -0.949 -0.332 -0.207 -0.505 -0.818
0.300 -0.081 -0.057 -0.736 -0.247 -0.154 -0.374 -0.587
0.350 -0.058 -0.043 -0.542 -0.181 -0.106 -0.267 -0.399
0.400 -0.039 -0.025 -0.360 -0.110 -0.068 -0.173 -0.247
0.450 -0.020 -0.013 -0.189 -0.046 -0.030 -0.092 -0.102
0.500 -0.003 0.003 0.004 0.009 0.003 -0.012 0.035

Table A6: Bond estimation results for FC, λs, multiplied by 109
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Average of β0 Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -0.0026 -0.0034 -0.0063 -0.0104 -0.0108 -0.0116 -0.0037
0.1 -0.0016 -0.0022 -0.0032 -0.0047 -0.0044 -0.0059 -0.0024
0.15 -0.0011 -0.0016 -0.0020 -0.0028 -0.0025 -0.0038 -0.0016
0.2 -0.0008 -0.0012 -0.0014 -0.0018 -0.0017 -0.0026 -0.0011
0.25 -0.0006 -0.0009 -0.0011 -0.0014 -0.0012 -0.0018 -0.0007
0.3 -0.0004 -0.0007 -0.0008 -0.0010 -0.0008 -0.0012 -0.0005
0.35 -0.0003 -0.0006 -0.0006 -0.0007 -0.0005 -0.0008 -0.0003
0.4 -0.0001 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0002
0.45 0.0000 -0.0003 -0.0001 -0.0003 0.0000 -0.0002 -0.0001
0.5 0.0001 -0.0002 0.0000 -0.0001 0.0002 0.0000 0.0000

5y
0.05 -0.0126 -0.0057 -0.0074 -0.0220 -0.0077 -0.0207 -0.0063
0.1 -0.0079 -0.0034 -0.0042 -0.0118 -0.0042 -0.0110 -0.0034
0.15 -0.0057 -0.0024 -0.0029 -0.0076 -0.0026 -0.0072 -0.0020
0.2 -0.0040 -0.0017 -0.0020 -0.0057 -0.0019 -0.0050 -0.0014
0.25 -0.0029 -0.0012 -0.0015 -0.0042 -0.0014 -0.0036 -0.0010
0.3 -0.0022 -0.0009 -0.0011 -0.0029 -0.0010 -0.0025 -0.0007
0.35 -0.0015 -0.0006 -0.0007 -0.0019 -0.0007 -0.0017 -0.0005
0.4 -0.0010 -0.0004 -0.0004 -0.0011 -0.0004 -0.0010 -0.0003
0.45 -0.0006 -0.0002 -0.0002 -0.0003 -0.0002 -0.0003 -0.0002
0.5 -0.0002 0.0000 0.0000 0.0004 0.0000 0.0003 0.0000

10y
0.05 -0.0291 -0.0075 -0.0102 -0.0299 -0.0154 -0.0327 -0.0096
0.1 -0.0168 -0.0043 -0.0061 -0.0180 -0.0084 -0.0175 -0.0054
0.15 -0.0117 -0.0030 -0.0043 -0.0135 -0.0058 -0.0119 -0.0036
0.2 -0.0091 -0.0022 -0.0031 -0.0087 -0.0042 -0.0088 -0.0026
0.25 -0.0066 -0.0016 -0.0023 -0.0069 -0.0031 -0.0064 -0.0020
0.3 -0.0050 -0.0012 -0.0018 -0.0056 -0.0023 -0.0047 -0.0014
0.35 -0.0037 -0.0009 -0.0013 -0.0035 -0.0016 -0.0033 -0.0010
0.4 -0.0024 -0.0006 -0.0009 -0.0027 -0.0010 -0.0022 -0.0007
0.45 -0.0012 -0.0003 -0.0005 -0.0015 -0.0004 -0.0011 -0.0003
0.5 -0.0003 0.0000 -0.0001 -0.0007 0.0001 -0.0001 0.0000

Table A7: Bond estimation results for NFC, β0
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Average of λ · 109s Country
Maturity / quantiles AT BE DE ES FR IT NL

2y
0.05 -1.087 -3.378 -3.858 -0.435 -2.414 -5.599 -3.691
0.1 -0.637 -2.234 -2.064 -0.161 -1.086 -2.662 -2.397
0.15 -0.438 -1.551 -1.291 -0.066 -0.650 -1.644 -1.592
0.2 -0.317 -1.223 -0.914 -0.024 -0.447 -1.105 -1.119
0.25 -0.232 -0.924 -0.689 -0.016 -0.315 -0.817 -0.713
0.3 -0.171 -0.740 -0.515 -0.011 -0.223 -0.572 -0.480
0.35 -0.121 -0.593 -0.367 -0.007 -0.138 -0.375 -0.321
0.4 -0.078 -0.464 -0.227 -0.004 -0.074 -0.258 -0.215
0.45 -0.029 -0.327 -0.127 -0.002 -0.013 -0.133 -0.107
0.5 0.006 -0.235 -0.034 -0.001 0.039 -0.040 -0.010

5y
0.05 -2.597 -5.673 -5.929 -9.162 -4.453 -6.652 -6.258
0.1 -1.443 -3.400 -3.178 -3.797 -2.452 -3.627 -3.393
0.15 -1.034 -2.394 -2.075 -1.934 -1.533 -2.523 -2.040
0.2 -0.767 -1.742 -1.465 -1.483 -1.078 -1.790 -1.426
0.25 -0.569 -1.247 -1.087 -1.042 -0.764 -1.302 -1.035
0.3 -0.415 -0.899 -0.785 -0.692 -0.526 -0.934 -0.745
0.35 -0.272 -0.647 -0.549 -0.480 -0.356 -0.631 -0.529
0.4 -0.167 -0.406 -0.346 -0.318 -0.214 -0.374 -0.342
0.45 -0.078 -0.204 -0.172 -0.243 -0.074 -0.151 -0.162
0.5 0.001 -0.013 -0.014 -0.168 0.063 0.050 -0.002

10y
0.050 -2.770 -8.007 -4.344 -8.744 -6.576 -14.026 -7.429
0.100 -1.517 -4.394 -2.502 -3.884 -3.419 -6.607 -4.303
0.150 -1.173 -2.932 -1.846 -2.510 -2.220 -4.464 -2.926
0.200 -0.886 -2.101 -1.246 -1.614 -1.575 -3.217 -2.125
0.250 -0.640 -1.563 -0.921 -1.190 -1.161 -2.341 -1.595
0.300 -0.446 -1.133 -0.687 -0.750 -0.862 -1.711 -1.169
0.350 -0.322 -0.817 -0.535 -0.479 -0.582 -1.231 -0.831
0.400 -0.193 -0.537 -0.347 -0.314 -0.363 -0.812 -0.538
0.450 -0.077 -0.263 -0.201 -0.129 -0.155 -0.388 -0.256
0.500 0.018 -0.003 -0.039 0.086 0.032 -0.048 0.025

Table A8: Bond estimation results for NFC, λs, multiplied by 109
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A.5 Results by credit ratings

Credit rating Investment grade

AAA Prime

AA+
High gradeAA

AA-

A+
Upper medium gradeA

A-

BBB+
Lower medium gradeBBB

BBB-

BB+

Non-investment grade (junk)

BB
BB-
B+
B
BB-
B+
B
B-
CCC+
CCC
CCC-
CC
C
D
Source: Standard & Poor’s

Table A9: Standard & Poor’s bond credit rating
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Figure A4: Bond price impacts for selected amounts sold by credit rating.
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Credit grade Maturity Number of
bonds

Outstanding
amount
(EUR Bln)

Prime
2y 320 551
5y 451 697

10y 358 590

Higher grade
2y 181 522
5y 222 684

10y 170 699

Upper medium grade
2y 154 149
5y 192 188

10y 152 180

Lower medium grade
2y 144 597
5y 241 809

10y 198 807

Non-investment grade
2y 8 7
5y 25 25

10y 20 26
Total 2,836 6,529

Table A10: Bond sample size by credit grade and maturity (2020Q4)
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