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Abstract
To analyze the international transmission of business cycle fluctuations, we propose a new
multilevel dynamic factor model with a block structure that (i) does not restrict the factors
to being orthogonal and (ii) mixes data sampled at quarterly and monthly frequencies. By
means of Monte Carlo simulations, we show the high performance of the model in comput-
ing inferences of the unobserved factors, accounting for the spillover effects, and estimating
the model’s parameters. We apply our proposal to data from the G7 economies by ana-
lyzing the responses of national factors to shocks in foreign factors and by quantifying the
changes in national GDP expectations in response to unexpected positive changes in foreign
GDPs. Although the share of the world factor as a source of the international transmission
of fluctuations is still significant, this is partially absorbed by the spillover transmissions. In
addition, we document a pro-cyclical channel of international transmission of output growth
expectations, with the US and UK being the countries that generate the greatest spillovers
and Germany and Japan being the countries that generate the smallest spillovers. There-

fore, policymakers should closely monitor the evolution of foreign business cycle expectations.

Keywords: International business cycles; Mixed frequency data; Bayesian estimation, Spillover
effects
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Non-technical summary

The 2008 global financial crisis shed light on—once again—the importance of international busi-
ness cycle linkages when analyzing national output fluctuations, even when the largest economies
in the world are the ones being analyzed. Disentangling the contributions of internal and common
external shocks to domestic output variability, together with the identification and quantifica-
tion of spillover effects from foreign shocks to the domestic economy, have been an important
subject of research in recent years.

To analyze these questions, the use of dynamic factor models with a block structure (e.g.,
Kose et al., 2003) has been widely extended. These models assume that fluctuations in a coun-
try’s aggregates are basically explained by a component common to all countries (interpreted
as the international business cycle, IBC hereafter), by a country-specific component (the na-
tional business cycle), and by idiosyncratic dynamics specific to each variable. For identification
reasons, orthogonality is assumed between unobserved factors. However, as noticed by Stock
and Watson (2005), this assumption implies that the approach is not appropriate for distinc-
tively identifying responses to common shocks from spillover effects, given that all cross-country
dynamics come from the world component.

A second issue that emerges in the literature relates to the time frequency under which the
analysis is conducted. In general, empirical applications rely on annual or quarterly databases,
which agree with gross domestic product (GDP) data availability. However, this implies as-
suming that the international transmission of business cycle linkages applies only at these large
frequencies, omitting from the analysis the valuable information of economic indicators that are
sampled at higher frequencies.

Aiming to handle both of the abovementioned concerns, we propose a new framework that
deals with both mixed frequencies in dynamic factor models (MF-DFMs) and block structures
where factors are not restricted to being orthogonal to each other. We deal with mixed fre-
quencies by “stacking” quarterly and monthly economic indicators (see Blasques et al., 2016).
In addition, we deal with spillover effects in multilevel dynamic factor models by allowing de-
pendence across the factors, as in Bai and Wang (2015), who show that in this framework the
factor orthogonality assumption is not needed for identification purposes. Finally, we rely on
Bayesian techniques to estimate the model’s parameters as in Koopman and Pacce (2016), by
using a Metropolis—Hasting within Gibbs sampling algorithm.

The proposed methodology is evaluated by conducting a Monte Carlo analysis. Results

suggest that adding quarterly variables (one or more) in the estimation procedure always results
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in a gain in terms of estimation accuracy, although improvements diminish with the number
of monthly variables per country already included. Our Monte Carlo results also illustrate the
high performance of our methodology in capturing the spillover effects.

To illustrate our approach empirically, the multilevel MF-DFM is applied to estimate both
the IBC and country-specific cycles at monthly frequencies from January, 1980 to December,
2018 for countries belonging to the G7. Within this framework, we find the following notable
results. First, the estimated factors are able to capture most of the major economic events
that occurred during the sampled period. Second, the share of output variance explained by the
common component is significant, albeit lower than that usually obtained in the IBC literature, a
result directly related to the assumption of non-orthogonality across factors. Third, we measure
the spillover effects in IBC dynamics by computing the impulse response functions (IRF's) of each
factor to shocks in the dynamics of the other factors. We find evidence of a rapid transmission of
international shocks, regardless of whether the shock affects the common factor or the country-
specific factors. Fourth, we address the extent to which shocks to national GDP affect foreign
GDP dynamics by conducting a conditional forecast analysis in line with Banbura et al. (2015).
We find that a positive innovation in the GDP of one of the G7 economies never results in a
negative impact on the GDP growth of the other G7 partner countries. In addition, we find that
the US and the UK are the countries with the largest positive effects on the other economies,
whereas shocks to German and Japanese GDPs only have a small impact on the output of the

other G7 countries.
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1 Introduction

Disentangling the contribution of internal and common external shocks to domestic output
variability, together with the identification and quantification of spillover effects from foreign
shocks to the domestic economy have been an important subject of research in recent years.
Overall, the literature supports the finding that common and country-specific shocks exhibit
a larger role in explaining business cycle fluctuations than spillover effects (Monfort et al.,
2003; Stock and Watson, 2005; Dées and Vansteenkiste, 2007). In this context, the analysis of
international co-movements across economies typically relies on two key assumptions.

First, the model framework is a dynamic factor model with block structures—also known as
a multilevel dynamic factor model—as in Gregory et al. (1997), Kose et al. (2003), and Crucini
et al. (2011), among others. These models assume that fluctuations in countries’ aggregates are
basically explained by a component common to all countries (interpreted as the international
business cycle, IBC hereafter), by a country-specific component (the national business cycle), and
by idiosyncratic dynamics specific to each variable. Although these models assume orthogonality
between unobserved factors for identification reasons, Stock and Watson (2005) show that they
fail to accurately identify responses to common shocks from spillover effects because all cross-
country dynamics are restricted to coming from the world component.

Second, the empirical applications rely on annual or quarterly databases, which agree with
the data availability of Gross Domestic Product (GDP) as it is the most relevant measure of
economic activity. However, this implies assuming that the international transmission of business
cycle linkages applies only at the level of these large time periods, omitting from the analysis
the valuable information of economic indicators that are sampled at higher frequencies. Thus,
there is a potential need for dynamic factor models with block structures to combine data from
different frequencies and to exploit the analysis of the international transmission of business
cycle shocks at shorter frequencies.!

Aiming to handle both of the abovementioned concerns, we propose a new framework that
deals with both mixed frequencies in dynamic factor models (MF-DFMs) and block structures
where factors are not restricted to being orthogonal between each other. We deal with mixed

frequencies by “stacking” quarterly and monthly economic indicators as in Blasques et al. (2016).

!The benefits of enlarging a model to deal with mixed frequencies when analyzing the dynamic propagation
of shocks has already been shown by Eraker et al. (2014) and Foroni and Marcellino (2016) in the context of
vector autoregression (VAR) models. To the best of our knowledge, only Aruoba et al. (2011) allow for mixed
frequencies to analyze international business cycles in a hierarchical factor model, which does not handle spillover

effects.
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In addition, we deal with spillover effects in multilevel dynamic factor models by allowing de-
pendence across the factors as in Bai and Wang’s (2015), who show that the factor orthogonality
assumption is a sufficient but not necessary condition for identification purposes. Finally, we
rely on Bayesian techniques to estimate the model’s parameters as in Koopman and Pacce’s
(2016) by using a Metropolis-Hasting within Gibbs sampling algorithm.?

To evaluate the performance of our proposal, we conduct a set of Monte Carlo simulations
whose data-generating processes are characterized by data sampled at quarterly and monthly
frequencies and spillover effects. Our results suggest that adding quarterly variables in the
estimation procedure always results in a gain in terms of estimation accuracy, as measured by
the R-squared of regressing the estimated factor on the true ones. Nevertheless, we also find
that these improvements diminish with the number of monthly variables that are included in
the model. Our Monte Carlo results also illustrate the high performance of our methodology in
capturing the spillover effects.

To illustrate our approach empirically, the multilevel MF-DFM is applied to estimate both
the IBC and country-specific cycles at monthly frequencies from January, 1980 to December,
2018 for countries belonging to the G7. Apart from quarterly national GDP, we follow Stock
and Watson (1989) and enlarge the set of indicators with industrial production, retail sales,
employment, and household income (whenever available). Within this framework, we find the
following notable results. First, the estimated factors are able to capture most of the major
economic events occurring during the sample period. Second, the share of output variance
explained by the common component is significant, albeit lower than that usually obtained
in the IBC literature. We show that this result is directly related to the assumption of non-
orthogonality across factors because a large portion of the dynamics explained by the world
factor is translated to each of the country factors when spillovers are allowed.

Third, we measure the spillover effects in IBC dynamics by computing the impulse response
functions (IRFs) of the global and each of the country-specific factors to shocks in the dynamics
of the other factors. Our findings suggest a rapid transmission of the international shocks,
regardless of whether the shock affects the common factor or the country-specific factors. In
particular, shocks hitting the global factor lead to pro-cyclical country-specific reactions, which
indicates a significant role of the world factor in the dynamics of each of the G7 economies. In
addition, we find spillovers emerging from each of the domestic economies to foreign economies,

the US being the only country that generates a positive effect in all other countries. These

2An additional advantage of our proposal is that it allows for missing observations, meaning series of different

lengths can be included.
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results are in line with Diebold and Yilmaz (2015), Antonakakis et al. (2016), and Carstensen
and Salzmann (2017), who also find that international spillovers play an important role in
national business cycles dynamics.

Fourth, we address the extent to which shocks to national GDP affect foreign GDP dynamics
by conducting a conditional forecast analysis in line with Banbura et al. (2015). In particular,
we compare two different conditional forecast scenarios. In the first scenario, we compute the
GDP point forecasts T'+ 1 for a given country, where T is the last quarter of available GDP
data. Conditional on this forecast, we also compute the forecasts from T+ 1 to T' + 4 for all of
the G7 economies. In the second scenario, we start from the GDP point forecast T+ 1, but we
add to it half a standard deviation and we compute a second set of conditional forecasts from
T+ 1 to T +4 for all of the G7 economies. We interpret the cumulative difference between the
two scenarios as the potential impact that an economic innovation in one particular country has
on other economies.

As a result of these conditional forecast comparisons, we find that a positive innovation in
the GDP of each of the G7 economies never results in a negative impact on the GDP growth of
the other G7 partner countries. In addition, we find that the US and UK are the countries with
larger positive effects on the other economies, whereas shocks to German and Japanese GDPs
only have a small impact on the output of the other G7 countries.

The policy implications of our results are clear: given the relevance of the international
transmission of business cycle effects that we find in this paper, stabilization policies aimed
at reducing fluctuations and maintaining healthy levels of economic growth should also closely
monitor the evolution of foreign business cycles.

The paper is organized as follows. Section 2 presents our multilevel mixed-frequency dynamic
factor model. Section 3 discusses the estimation strategy. Section 4 provides the results of the
Monte Carlo simulations. Section 5 describes the empirical application and presents the results.
Section 6 offers some concluding remarks. Finally, the Appendix provides technical details and

some additional results.

2 Methodological framework

2.1 The model

Multiple dynamic factor models with a block structure are the commonly used framework when

different levels of co-movements are assumed among economic variables. For instance, Gregory
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et al. (1997), Kose et al. (2008), and Crucini et al. (2011) assumed a two-level structure in
order to characterize the business cycle at an international and at a country level. The model
presented in this paper is an extension of this kind of multilevel representation.

Let 7 =1,--- 7 represent time periods; let ¢ = 1,...,C stand for countries; let n. be the
number of variables for each country c; and let N = Zle n. be the total number of variables
included in the model. The source of variation of any observable variable (yi¢), withi = 1,...,n,,
is assumed to depend on a factor F (the “world factor”) common to all countries, on a group-

specific component f¢ (the “country factor”), and on the idiosyncratic dynamics of each variable

(ui€).3 Therefore, the model can be specified as
Vi = BER 4 B 0

where both 3 and (% are the loading factors, capturing the sensitivity of each variable to
the latent factors. As usual, ui¢ is assumed to be normally distributed and possibly serially

correlated following a p;.-order autoregression:

uic — d)’icuic_l 4+ qbécicuic—pie + 83.6, (2)
where
ek 062,-6 fori=j,c=kands=0
K [57 5T,S} = (3)
0 otherwise
Putting all observable variables and innovations into two N x1 vectors Y, = [yil, cooymt in,

. ,yﬁco]/ and U, = [uil, coumt ke ,uZCC]/, equation (1) could be written in the

following matrix form:
Y; =B, BF.+U, (4)

/ .
where F, = [F¥, f1,..., f€]’; B, = {B;v/ B‘c’”} . with BY = [, ..., r<]'; and B,
/ .

is a diagonal matrix with [Bl BC} in the main diagonal, with B, = [ﬁw,...,ﬁncc]/.

Regarding the unobserved component dynamics, the common assumption in the literature is

that each factor could follow an independent autoregressive process of order ¢q. Considering a

3 According to the statistical properties of our database, we assume that the observable variables are expressed

in terms of growth rate.
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VAR(1) specification, the process could be written as

Fv bw 0 ... 0 w €
f,} 0 ¢1 O ;_ 671_
=1 . T (5)
i 0 0 ... ¢c) \I<, e

where the factors’ innovations are supposed to be normally distributed and independent at all

leads and lags,

v 0| [¢2 0 ... 0
el | . 0 0 o2 ... 0
ENLL T (6)
¢ 0] [0 0 ... 02|

By assuming independence among {FV, f1 ..., f¢} (all the off-diagonal elements of the VAR
equal to zero) and some sign restrictions, factors are separately identified conditional on a scale
normalization. However, Bai and Wang (2015) have shown that orthogonality between factors
is a sufficient, but not necessary, condition for identification purposes. In other words, the VAR

specification could be generalized by changing equation (5) to

Fr Sww  Pwi . PucC 1 €7
f% _ | % du - dic 1 . et -
e dcw dc1 ... dcc) \fE4 ¢
—— —— N —
F; (I)(l) Fr &r

without losing the possibility of identifying the unobserved factors. According to Proposition 3
in Bai and Wang (2015), defining a dynamic factor model as in (1), (2), (7), and (6), the factor
model is uniquely identified just setting 02 = 0% = --- = 02 = 1, with BY and {B.}¢_, being
lower triangular with strictly positive diagonal terms, and [Bé” BC} being full column rank
matrices for ¢ = 1,...,C. Assuming only one world factor and one country factor per country,
the sign identification is similar to that in Kose et al. (2003), Crucini et al. (2011), and many
others. Taking advantage of the mentioned proposition, the present paper assumes a dynamic

for the factors similar to equation (7), where “spillover” effects between factors can be captured.

2.2 Mixed frequencies

In many empirical applications, the economic indicators yi¢ are sampled at both quarterly and

monthly frequencies. In this case, at least two possibilities emerge: either the model is set at
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the lower frequency (quarterly) and some transformation is done to the higher-frequency series
(monthly), or a mixed-frequency strategy is followed.

When the first approach is selected, a common way to proceed is to aggregate the monthly
variable at a quarterly frequency. Assuming 7 refers to months, ¥ in equation (1) would be

quarterly aggregated as
Y = w(L)y =y + 4 +y (8)

for 7 = 3,6,...,7T/3, where t = 7/3 refers to a quarter and w(L) = 1+ L + L? (L being the lag

operator). Therefore, equation (1) could be written as
o = BEER + 65 ©

where F, f¢, and ui¢ are quarterly aggregated. This kind of representation would lead to
writing the transition equation at a quarterly frequency and, consequently, the VAR(1) process

of equation (7) would be equal to
Fi = ®(1)°Fiq + & = CFy_y + ki, (10)

where C' = ®(1)3. Foroni and Marcellino (2016) showed that, when quarterly aggregated,
the term x; in equation (10) is a vector moving average of order 1 (VMA(1)) process and,

therefore, the transition equation would follow a first-order vector autoregressive moving average

(VARMA(1,1)) process as
F:=CFi1+a+ T 1, (11)

where ¢; ~ (0,£2). As stated in Foroni and Marcellino (2016), an econometrician would be able
to estimate C , T, and Q, but from these matrices she could not uniquely identify ®.* It should
be noted though, that when ® is diagonal—as in the case of no spillover between factors—
this identification problem does not emerge. Nonetheless, Foroni and Marcellino (2016) also
correctly points out that a VARMA(1,1) model like the one in equation (10) would, in general,
be approximated by a finite order VAR, creating further identification issues for the monthly
parameters.

In other words, when it is believed that monthly and quarterly variables contain relevant

information regarding the linkage between countries’ business cycles, setting the model at the

“Foroni and Marcellino (2016) correctly indicate that the knowledge of C = ®* does not, in general, allow
uniquely identifying the parameters of ® since matrix multiplication creates non-linear combinations of the original

parameters.
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lower frequency would create serious identification issues for recovering factor dynamics and
their mutual relationships. Therefore, a mixed-frequency setup could potentially be a better

strategy to follow.

2.2.1 Stacked approach with monthly and quarterly variables

We follow the stacked approach representation proposed by Blasques et al. (2016) to allow a
dynamic factor model with a block structure and spillovers across factors for mixing frequencies.’
These authors show that under the state-space representation, it is possible to deal with the
mixing frequencies problem by stacking the higher-frequency data (monthly) into a vector of
observations that operates at the lower frequency (quarterly), while all of the high-frequency
information is still preserved.

In Blasques et al.’s (2016) notation, monthly variables g, (7 is the monthly time index) can

be stacked into a quarterly observed vector y; (¢ is the quarterly time index) of the form

Yt Y3(t—1)+1
Y=\ Y2 | = | Yse-1)+2 | - (12)
Yt3 Y3(t—1)+3

where y; i, is the k-th element of y;, t refers to the quarter the monthly observations belong to,
and k = 1,2,3 indicates the month within quarter ¢t. As an example, y;1 will always refer to
the first month of the quarter, meaning that depending on the quarter that ¢ is referring to, the
months will possibly be January, April, July, or October. Therefore, if the quarterly timespan
ist=1,...,T, the length of the monthly series will be 7 =1,...,3T.

Within this context, autoregressive processes could be written with the stacked approach
through a vector autoregressive (VAR) process where y; depends on its own lags. As an example,

an AR(1) process §; = ¢,¥r—1 + &, where &, d N(0,02), could be written using (12) as

ye = T yi1 + Rey, (13)
where
0 0 ¢y 1 0 0
T"=1(0 0 ¢2|, R=[¢, 1 0 (14)
00 ¢ P2 Py 1

5Koopman and Pacce (2016) also use this approach to handle mixing frequencies in a non-linear single dynamic

factor model within a Bayesian framework.
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A quarterly variable (z;) is added easily in (13) by noting that monthly observations already
operate at a quarterly frequency. Assuming z; also follows an AR(1) process given by x; =

Gpx_1 + M, with 1y N (0, 0727), Blasques et al. (2016) propose the following mixed-frequency

representation:
Tt gf)m 0 0 0 Tt ¢x 0 0 0 Nt
Yt,1 0 0 O ¢ Yt—1,1 0 1 0 0 €t
t _ y t n t (15)
Yt,2 0 0 0 ¢2||y-12 0 ¢y 1 0] [ete
Yt,3 0 00 ¢y \w13 0 ¢5 &y 1) \eus

2.2.2 Stacked framework for VAR processes

Continuing the line of reasoning detailed previously, we delineate how to adapt the stacked
framework to deal with VAR processes. Consider a VAR(1) process with two monthly variables,

yL and y2. Under the classical representation, this process could be written as

1 1 1
_ €
yr| én1 d12) (Yr1 () 16)
y2 P21 P22 y2_, €2
where
1 2
€ 0 o 0
"] ~NID N : (17)
g2 0 0 032

Using equation (12), all monthly observations and innovations {yl,32,el,e2}3L, can be
written as stacked quarterly vectors {y},y?, e}, €7}, (remembering that ¢ is a quarterly time
index). With this notation, the VAR(1) process characterized in (16) for (¢,1), (¢,2), and (¢, 3)

can be described as

1 ¢ (b 1 1
1 012 ~ €
) — § (") = ), (18)
Yia P21 P22 Yi13 €1
1 (Z) (Z) 1 1
1 012 €
2 — $ ") = SRk (19)
Yt o G211 P22 Yi1 €12
1 (Z) (Z) 1 1
1 012 €
t3) — (") = A (20)
Yi 3 $21 P22/ \Yio €13

It should be noted that both the variables for the second month (¢,2) and the third month (¢, 3)
of the quarter could be written in terms of the last moth of the previous quarter (¢ — 1, 3). This

can be done by substituting (ytl,l, yz 1) in equation (19) by equation (18). The obtained result
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could then be used to replace (ytl’Q, yZQ)/ in equation (20). After some algebra, it can be shown

that
2 2
A Z; P1idi1 ;:1 P1iPi2 Y13 11 P12\ [eis . £t 1)
— - S 7
Yia S poitin S buidia | \Vi-13 da1 d22) \ei, e7,
i=1 i=1
2 2
1 > > $1bida Z Z P1jPjitiz |
Y3 — Jj=li=1 ] 1z Y13 n
= 2 2
2 2
yt73 Z Z ¢2j¢ji¢i1 Z Z ¢2j¢jl¢12 yt71,3
j=1li=1 j=11i=1
2 2
Z; P1iPi1 l; P1iPi2 €ty b1 b1z [ery el
; 5 )+ R (22)
D P2din Y Pudia | \Fta P21 P22) \Ei2 €23
i=1 =
Using (18), (21), and (22), the VAR(1) process can be written in matrix form through the

stacked vectors y},v?,er, and €7 as

with matrices

/
a_ (.1 1 1 2 2 2
Yy = (yt,l Y2 Y3 Y1 Yi2 yt,3> )

T*
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/
Gt = (5%,1 5::1,2 5::1,3 5?,1 5?,2 5?,3) J
: on | | P12
I 2 I I 2
| > Pida | | > Pridio
R i 2
D2l D Dbt LY Y 0105i%i2
Oexz) 1 7=1e=1 O(exz)! =17=1 ,
\ P21 ! ! P22
. A
Ll P2 L2 P2idie
: ) 2221 : : ) Z=21
LY Y P2bidin ! LD D B2id5idie
L I j=1i=1 ! j=1i=1 J
1 0O O 0 0O O
¢11 1 0 P12 0 0
2 2
Yoot du 1D dridie iz O
R |= i=1 7
0 0O O 1 0O O
P21 0 O P29 1 0
2 2
Yoo pa1 0 D daidin P2 1
i=1 i=1

12



and (; i N(0g,1), ¥), where ¥ = diag(a?l,agl,agl,0522,032,032). In Appendix A, it is shown
how to derive VAR(1) and VAR(2) processes when increasing the number of variables involved

in the VAR.

2.2.3 Stacking the multiple dynamic factor model with a block structure

Models trying to capture the evolution of both the international and country cycles have, in
general, been studied restricting observable variables to being expressed in the same unit of
measure (e.g., annual, quarterly, or monthly growth rate) and having the same length. To the
best knowledge of the authors, the only exception in the literature is Aruoba et al. (2011), who
estimate a hierarchical multicountry model using quarterly and monthly variables.

Based on a dynamic factor model that allows for mixed-frequency data and missing obser-
vations, as proposed by Mariano and Murasawa (2003), Camacho and Perez-Quiros (2010), and
Aruoba and Diebold (2010), among others, they first estimate each country factor and then
decompose these factors into a component common to all and an idiosyncratic component. De-
parting from this approach, we propose an alternative way to deal with mixed frequencies in the
context of a multiple dynamic factor model with a block structure, which is also able to deal
with missing observations. By contrast, our approach has the important feature of fitting the
model to deal with non-orthogonal factors, allowing for the possibility of computing “spillover”
effects.

Mixed-frequencies are allowed in dynamic factor models by using the stacked approach al-
ready shown in Subsection 2.2.1. Beginning with monthly variables, the dynamics can easily be
represented in terms of monthly factors as in equation (1). In order to simplify exposition, we

assume that u' = £, which implies
Ve = B+ Bk, (23)

iid
where !¢ N (0, azic).

Let us assume that we add a quarterly variable for a country, ¢ (xi¢). Its quarterly dynamics
will be approximated by the monthly dynamics of the common, the country, and the idiosyncratic

components as follows:

xic = iwaﬂt_1)+1 =+ 5éwa§?t—1)+2 + 5§?wF??(}t—1)+3 +
B Fste-1ye1 + BE Fe—1ypo + B3 fi 1y s + 05 (2

where ¢ Y (0,03“). Blasques et al. (2016) impose the simplifying assumption that the

loading factors are fixed for all of the months of the respective quarter, which implies that
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e = B and ﬂ}f = 3 for k = 1,2,3.5 When this is the case, equation (24) could be written

kaw —

using the stacked approach for the factors as
xic — (,3{5 5&? 5&?) Ftw + (ﬁw ﬁic Bzc) ftc + ngc' (25)

Including both monthly and quarterly variables within the model is straightforward. Assume,
for exposition reasons, a two-country multilevel model with one monthly and one quarterly
variable per country, where factors follow a VAR(1). The state-space representation of (23) and

(25) becomes

Xy =ZF + vy y~N (0,H),
(26)
tﬁ-l = j_v*ljt>k +R§t ftNN <O7Q)7
where
/
Xeo= (o uiboulh A w3 w3 aP)
/
L N A N R R A R
/
o= (el elh elh ot el el e aB)
/
& = (635',11 €ty €3 €1 €Go €3 €1 €ho 6t,3)’
Bul 00 gle 0 0
B B 0 0 le 0 0 ,810 0
Z = “ ! (#4x3) where B, = P and B, =
By, Ouxs) B2 0 0 Bk 0 0 B
620 /82C 520 620 /82C 620
w w w

for ¢ = {1,2}. @ and H are both diagonal matrices for which entries in the main diagonal are de-

2 2 2 2 2 2 2 2 2 2 2 2 2
w? Uw70w7 0_170—170_170—27 02702) and (0_51170_51170—51170—77217

termined, respectively, by the vectors (o
0-312, 0512, 0-8212, 072722). Matrices T* and R are derived following the line of reasoning of subsection

2.2.1 and are equal to

5This is not a restrictive assumption. However, allowing for different loading factors across the months of the

quarter will increase the number of parameters considerably.
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: ¢w1 : : ¢w2 : : ¢w3
| Y Owibiw | | Y. bwitin | | Y Pwitin
: i={w,1,2} : : i={w,1,2} : : i={w,1,2}
: @qubjiqﬁiw : : ¢wj¢ji¢zl : : Z ¢wj¢ji¢i2
L j={wi,2} i={w1,2} ‘ L i={wi 2} i={w1,2} ‘ L j={wi,2} i={w1,2}
: O1w : : P11 : : 12
| | | | |
7+ — | Oox2) | _ > PLdiw 1 O9x2) | ' > uda 1 O9x2) | > brdie
| i={w,1,2} | | i={w,1,2} | | i={w,1,2} ’
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In Appendix A.1, the full derivation of matrices T* and R is shown for the case of a VAR(1)
process when 3 monthly variables are included. It should be noted that the transition equation
of (26) corresponds to that particular case.

According to Proposition 3 in Bai and Wang (2015), three identification issues arise when
factors are not orthogonal to each other. First, in order to identify the scale of the factors, it
needs to be assumed that 02 = 0% = 02 = 1 (or Q = Iy). In addition, for a unique identification
By, , B1, and By should be lower triangular matrices with strictly positive diagonal terms, and
[Buy,, Be] should be full column rank matrices for ¢ = {1,2}. These restrictions can be achieved
by using the sign identification scheme proposed by Kose et al. (2003), Crucini et al. (2011),
and many others. This means restricting the factor loadings for the “world factor” of the

first monthly variable of the first country in the list to being strictly positive (e.g., industrial
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production index of the US), while country factors should have strictly positive factor loadings

of the first monthly variable of each country (e.g., industrial production index of each country).

3 Estimation strategy

Assume a multiple dynamic factor model with a block structure that could be written using
the state-space representation as in (26). Suppose there are C' countries with n. variables per
country, while the dynamics for the (C'+ 1) factors follow a VAR(1) process and the innovations
errors of the N = chzl n. observable variables follow an AR(1) process. Then, denoting by ¢
the set of parameters { @y U {{Pwe, Pew} U {d¢j, gbjc}?:l U{Bis, B, 0%, pi e, ¢ |}, there are
a total of N x 4+ (C +1)? parameters’ and C + 1 unobserved factors that need to be estimated.

For this purpose, in this section we develop a Bayesian approach. Specifically, the estimation
basically relies on a Metropolis—Hastings algorithm within a Gibbs sampling procedure where the
problem is reduced to a number of draws—accounting for the presence of missing observations—
from the posterior distribution of the parameters given the factors p(¢|F™, f', ..., f¢) and from
the posterior distribution of the factors conditional on parameters p(F™, f1,..., f¢|¢). The
algorithm basically consists of 5 blocks, briefly described below. In Appendix B, a detailed
explanation about each of the steps related to the sampling of parameters is given. Starting and

prior values are described in Appendix C.

3.1 Sampling algorithm

i. Steps 1 and 2: Drawing loading factors and innovation errors.

If we know the true factors, each of the equations described in (1) could be evaluated as
an independent regression with Gaussian autoregressive errors. If we also assume that the
autoregressive parameters in (2) are known, each equation (1) could be written as a quasi-
differentiated equation with homoscedastic and uncorrelated residuals. Then, it is possible
to post a normal-gamma prior, where the conditional posterior for 3 5% and o.:. is also

normal-gamma.

ii. Step 3: Drawing autoregressive coefficients for observable variables.

Each of the equations described by (2) can also be drawn as an independent regression

once the idiosyncratic components, ui€, and the innovation variance, o2, are treated as if
) t 9 gicy

"Including 7 countries and 4 variables per country means 176 parameters.
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they were known. Since residuals are white noise, the usual normal prior with a normal

conditional posterior can be post for the regression coefficients.®

iii. Step 4: Drawing VAR coefficients conditional on factors.

Once the world and country factors are assumed as given, and noting that the variance—
covariance matrix for factor innovations is assumed to be known and diagonal for identifi-
cation reasons, the VAR process described in equation (7) can be easily estimated. As in
the previous step, a normal prior with a normal conditional posterior can be assumed, in

this case to estimate the VAR coefficients.

iv. Step 5: Sampling latent factors given parameters.

One common strategy when latent factors of multilevel dynamic factor models need to be
estimated is to draw each latent factor conditional on the rest of the factors and parameters
(see Kose et al., 2003 and, Crucini et al., 2011, among others). However, this approach is
not suitable when factors are non-orthogonal between each other. Alternatively, the state
vector described in (26), which contains all latent factors, can be drawn conditional on

observations and parameters by means of a simulation smoother:

Fyp ~p(F{[Xe, 2, T, R, H,Q,t =1,....,T). (27)

Among others, Carter and Kohn (1994), Durbin and Koopman (2002), and Bai and Wang
(2015) propose different alternatives for the simulation-smoother algorithm. In this paper,
we follow Durbin and Koopman (2002) because the algorithm has been proven to be com-
putationally fast when T™ and T are large and it deals easily with missing observations,

which facilitates the empirical analysis.”

When serially correlated innovations for observable variables are assumed, the state-space
representation can be written in terms of quasi-differenced variables (using equation 32 and
equation 36) depending on quasi-differenced factors. Kim and Nelson (1999) propose a
“compact” state-space representation based on this quasi-differentiate approach (see equa-
tion 8.33' in their book), which is adapted to deal with the stacked state-space representation

by Koopman and Pacce (2016) within a non-linear framework.

8 A Metropolis-Hastings algorithm within Gibbs sampling is used in this step in order to discard explosive

roots.
9Following Durbin and Koopman (2001), pp. 92-93, a Kalman filter is applied to a modified version of

the state-space representation where, at each ¢, rows (or columns) of the measurement equation’s matrices that

correspond to missing observations are removed.
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4 Simulation study

In this section, we analyze the performance of the estimation method described above in the
context of mixing frequencies when different numbers of quarterly variables are included in the
model. For this purpose, we use data-generating processes (DGPs), which allow controlling the
signal-to-noise ratio and the serial correlation in both the factor dynamics and the idiosyncratic
terms. In addition, the model allows mixed frequencies for variables and non-orthogonality
across factors. 10

Assuming a total of C' countries, the dynamic factor model is defined as in (7) and (6).

A VAR(2) will be assumed for the dynamics of the factors, which can be expressed in the

companion form as

F. d(1) P(2 F _
_ ( ) ( ) 71 + §T ’ (28)
F. Lo O14c/) \Fro2 011
—_———— ——
F, T Fri g

where & N (0,%¢), and Xg is a matrix of zeros except for the first 1 + C elements of the

main diagonal, which are equal to 1. ®(1) and ®(2) are defined below fulfilling the assumption

of stationarity of the factors. Variables ¢ = 1,...,n. for each country c are generated as follows:
if i is monthly — 3¢ = BIFY 4 gicfe ¢ uiTc, T=1,...,3T,
if i is quarterly —  zl¢ = ZﬂwF(t 1)3+h T Zﬂwft 1)3+h + ule, t=1,...,T,
h=1

where the loading factors are generated from a normal distribution (3% 4 B ~ N(0,1)).

We define pfc as the parameter that governs the signal-to-noise ratio for each variable (those
signal-to-noise ratios are drawn from a uniform distribution on [.2,.8]). pk restricts the variance
of the innovations errors, which for monthly and quarterly variables are assumed to follow an

AR(2) process described by

e ; ; id
if i is monthly —  u'® = ¢\’ | + p¥ulc 5 + €%, gle W YN 0,v77),
i did
if 7 is quarterly — ut = quic 1+ ¢2 ut 9+ nt , ¢~ N(0,v8),
JE 1-gif k

ic = Trel)[(1—gi )2 —(6i0)2] &

k
kE _ _ Pic ic i7\2
Yie =T F Bk, (00)° + Z f’%ﬂ) e Chy

ic

for k = {m,q},

Y0ur proposed DGPs basically rely on the DGPs described in Stock and Watson (2002) and Doz et al. (2012)

for the single-frequency case.
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where Xz, , is the (h, h) element of the variance of F;.!! Similarly, £z, , is the (h, k) element
of the variance—covariance matrix of the vector of the quarterly-added factors in the companion
form:

/

3 3 3
Fr = where F, = h; F(t71)3+h };1 f(lt—1)3+h e ’;1 f(t—1)3+h

We generate two-country models by changing the number of monthly and quarterly variables
included in each country. In particular, if m. and ¢. are the number of monthly and quarterly
variables included for country ¢, then each combination of m. = {0,...,5} and ¢. = {0,...,5}—
where at least three variables are included—is simulated 100 times. It should be noted that the
number of monthly variables included (when included) is relatively small, in an attempt to create
a scenario similar to the one that will appear in the empirical approach. The sample size is equal
to T' = 100 for g, (or 3T = 300 for m,), which corresponds to almost 25 years of data.'? In all

cases, the VAR(2) process assumed for the factors is given by

2 =2 4 1 -1 2

which is line with the dynamic of the VAR(2) process that Bai and Wang (2015) use in their
simulation study. The AR(2) process for innovations comes from setting ¢i¢ = .4 and ¢¥ = .2
for all ¢ and c.

To evaluate the performance of the Bayesian estimation of the stacked approach, we perform
two analyses. In the first analysis, we examine the performance of the model in obtaining
accurate inferences of the factors. For this purpose, we compute the adjusted R-squared of
regressing each estimated factor on the true one, which can be interpreted as a measure of
the goodness of fit. Figure 1 shows the median of the adjusted R-squared values over the 100
simulations for the common factor and for the two country-specific factors.

As expected, the factor common to all countries (F'") is always better assessed than the
country factors (F; and Fy). This is because the number of variables affecting F™ is greater
than those affecting each country factor. The improvements in the adjusted R-squared values

are significant when the number of monthly variables increases, especially when the number of

"from the companion form vec(S7) = [Ijpatc) — T @ T] 'vec(Xe)
2When increasing m. or ¢, the variables used in the previous step are maintained (e.g., when moving from

(me = 3,gc = 0) to (me = 3,g. = 1), the three monthly variables and factors are kept and just a quarterly variable

per country is added to the model.

ECB Working Paper Series No 2484 / October 2020 19



Figure 1: Adjusted R? of regressing estimated on true factors

Common Factor

R squared

3
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Note: Median values over 100 model simulations of each combination of {mf,¢!}. The = axes represent the

number of monthly variables included per country.

quarterly variables already included in the models is relatively small. As an example, the black
line with stars (which represents the case where only one quarterly variable is included) increases
with the number of monthly variables added (from 2 to 5 monthly variables), and this is the
case for all lines in Figure 1. This suggests exploring the mixed-frequency approach to obtain
accurate inferences for the unobserved factors.!

The second analysis is related to the precision of the estimation of the VAR coefficients’
governing factor dynamics. Figures 2 and 3 show the estimated coefficients for the two autore-
gressive matrices for each combination of m, = {0,...,5} and ¢. = {0,...,5}. Each vertical line
connects the mean of the 16% and 84% quantiles for the estimation of the VAR’s parameters
over the 100 simulations. The marker in every single line reflects the mean of the estimated
median for each case.

Some results can be extracted from a visual inspection of the figures. The first result is that
when no monthly variables are included (vertical lines that refer to 0 in the x axis), it is very hard
to obtain estimates different from zero for those VAR parameters that allow for spillover (all
parameters off the main diagonal of ®(1) and ®(2)). This result shouldn’t be surprising because
the model is trying to capture the monthly dynamics of the factors from quarterly information.
However, the estimation of the elements in the main diagonal (those capturing the effects of
past values of one factor on the factor itself) is relatively accurate even when no monthly series
are included. These outcomes are related to the identification issues regarding the estimation

of matrix ® when only quarterly variables are included in the model (see footnote 4 in Section

131t should be noted that under the stacked approach, when only quarterly variables are included, a monthly

factor is still obtained and, therefore, it is possible to compute the adjusted R-squared.
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Figure 2: Factor’s VAR coefficients for ®(1):

True values and mean of 16% and 84% estimated quantiles
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Note: Vertical lines represent the mean of the [16% — 84%] quantiles over 100 replications of the estimation of
VAR coefficients for each combination of monthly and quarterly variables included per country in the model. The
x axes represent the number of monthly variables used in the estimation of each coefficient. The true values of

coefficients are shown in titles and with the horizontal black line.

2.2), problems which do not emerge when no spillovers are allowed.

The second result is that for any given number of monthly variables, including more quarterly
variables pushes the median value of the VAR parameters to the true values. Adding monthly
variables to the estimation also has a positive effect on the estimation of VAR parameters, which

is more visible for the parameters of the ®(1) matrix. This shows that using mixed frequencies
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Figure 3: Factor VAR coefficients for ®(2):

True values and mean of the 16% and 84% estimated quantiles
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helps in the estimation of factor dynamics, even when quarterly variables are used to infer the
dynamics of the monthly unobserved factors.
5 Empirical Application

The multilevel dynamic factor model is applied for the G7 economies using a dataset that spans
from January 1980 until December 2018.

The empirical application described below has some distinctive features with respect to the
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literature on multilevel dynamic factor models with a block structure (e.g., Kose et al., 2003 and
Crucini et al., 2011, among others). First, our framework allows for the possibility of analyzing
the “spillover” effects of shocks originating in any particular country. This is feasible since
unobserved factors are allowed to follow an unrestricted VAR(p) process. Second, by allowing
the factors to have a monthly dynamic (through the use of mixed frequencies), we limit the
possibility that a country innovation generated in a specific month will be confused with a world
innovation if it is the case that the country innovation spills over to other economies within a
quarter. We further exploit these features, and we analyze how innovations in the GDP growth

of one country could affect the expectations of GDP growth in other countries.

5.1 Data description

We select the relevant indicators for each country by following Stock and Watson (1989). Apart
from GDP, we include one supply-side indicator (industrial production), one demand-side indica-
tor (retail sales), one series describing the employment situation and, when available, one series
related to household income. Table 1 shows all series included per country and their respective
time spans. Since model estimation does not need a balanced data set, series are not always
for the whole period (January 1980-December 2018). All variables are seasonally adjusted and
expressed in terms of growth rate to avoid unit root problems. Data are from OECD, national

statistical offices, central banks, and Datastream.

5.2 International business cycles

The multilevel dynamic factor model described in equations (23), (25), (7), and (6) is estimated
for the G7, assuming a VAR(2) process for the dynamics of the factors and an AR(2) process
for the idiosyncratic errors u’“. Sign identification relies on restricting country loading factors
associated with the industrial production (IP) of each country and the world loading factor
related with this variable (but only for the US) to being strictly positive (i.e., fip. > 0 for
c=1,...,C and ﬁ%UP’US > 0). Scale identification comes from assuming Q = Icq.'

World and country factors are estimated from a Markov Chain of length 8000 (after burning
the first 2000 draws). Figure 4 shows the median of the posterior distribution of the estimated
world factor, including the 16% and 84% percent quantiles. Given the importance the US has

for the world economy, the figure also includes NBER recession dates (shaded areas). The figure

4 Among others, Kose et al. (2003) and Crucini et al. (2011) use similar restrictions. In line with Bai and Wang

(2015), the VAR dynamics of the factors remain unrestricted.
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Table 1: Data series included per country

Series Range
Industrial Production (m) 1980:01-—2018:12
Real Manufacturing and Trade Industries Sales (m) 1980:01—2018:12
United States (US) All Employees: Total Nonfarm Payrolls (m) 1980:01—2018:12
Real Disposable Personal Income (m) 1980:01—2018:12
Real Gross Domestic Product (Q) 1980:Q1—2018:Q4
Industrial Production (m) 1980:01—2018:12
Total Retail Trade (volume) (m) 1980:01—2018:12
Japan (JAP) Total Employment (m) 1980:01-2018:12
Real Net Household Disposable Income (Q) 1980:Q1-2018:Q4
Real Gross Domestic Product (Q) 1980:Q1-2018:Q4
Industrial Production (m) 1980:01-2018:12
Real Trade, except for motor vehicles and motorcycles (m) 1980:01-2018:12
Germany (GER) Total Employment (m) 1981:01-2018:12
Real Net Household Disposable Income (Q) 1991:Q1-2018:Q4
Real Gross Domestic Product (Q) 1980:Q1-2018:Q4
Industrial Production (m) 1980:01-2018:12
Total Retail Trade (volume) (m) 1980:01-2018:12
United Kingdom (UK) Total Employment —first period— (m) 1980:01-1991:12
Total Employment —second period— (m) 1992:01-2018:12
Real Household Disposable Income (Q) 1980:Q1-2018:Q4
Real Gross Domestic Product (Q) 1980:Q1-2018:Q4
Industrial Production (m) 1980:01-2018:12
Total Retail Trade (volume) (m) 1980:01-2018:12
Canada (CAN) Total Employment (m) 1980:01-2018:12
Real Net Household Disposable Income (Q) 1981:Q1-2018:Q4
Real Gross Domestic Product (Q) 1980:Q1-2018:Q4
Industrial Production (m) 1980:01-2018:12
Household Consumption Expenditure in Manufactured Goods (m) 1980:01-2018:12
France (FRA) Payroll Employment (Q) 1980:Q1-2017:Q1
Real Gross Household Disposable Income (Q) 1980:Q1-2018:Q4
Real Gross Domestic Product (Q) 1980:Q1-2018:Q4
Industrial Production (m) 1980:01-2018:12
Total Retail Trade (volume) —first period— (m) 1990:01-2000:01
Ttaly (ITA) Total Retail Trade (volume) —second period— (m) 2000:02-2018:12
Total Employment —all employees excluding executives— (m) 2000:01-2018:12
Real Gross Domestic Product (Q) 1980:Q1-2018:Q4

Note: (m) indicates monthly variables, while (Q) indicates quarterly ones. Data sources are OECD, national statistics offices, Datastream,
and national central banks. All series are seasonally adjusted.
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Figure 4: World factor
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Note: Posterior median and the 16% and 84% estimated quantiles. Shaded areas correspond to NBER recession

dates.

indicates that the performance of the world economy during NBER recessions has, in general,
been negative. In this sense, economic downturns such as the double dip recession of the early
1980s, the mild recession of the early 1990s, the downturn at the end of 2001 (associated with
the dot-com bubble burst), and the global financial crisis of 2008 are described by the world
factor. Most of these major world economic events were also captured in Aruoba et al. (2011),
Kose et al. (2008), Kose et al. (2012), Crucini et al. (2011), and Mumtaz et al. (2011).

Figure 5 shows the evolution of the estimated country-specific factors. Each country captures
the economic developments of its respective country. The US country factor exhibits negative
values during each of the NBER recession dates. The Japanese factor takes negative values for
a long period during the 1990s, the “lost decade”. The German factor shows the reunification
boom followed by the recession during the first years of the ‘90s. The UK factor reflects both the
early ‘80s and ‘90s recessions. Moreover, factors for European countries also reflect the economic
downturn of the “European sovereign debt crisis” in 2011-2012.

In Table 2, we examine how each factor influences national economic cycles. For this purpose,
the table reports the relative importance of each factor in the variance of GDP and industrial
5

production.’

The table suggests that the share of GDP variability explained by the model is relevant for

5We calculate the variance explained by each factor as if the factors were orthogonal to each other. This is
mainly due to difficulties in assigning the magnitudes attributable to the covariance between the factors when
calculating the variance share of the non-orthogonal factors. We assume the difference between the share of the
variance explained by each factor when the factors are assumed to be orthogonal and when they are assumed to

be not, as the magnitudes attributable to that covariance.
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Figure 5: Country factors
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all G7 economies. The world factor explains a substantial share of the output variance (at least
16%) in 5 out of the 7 countries, although its role in explaining the business cycles of Japan and
Germany appears to be less important. In addition, the country factors explain no less than
24% of GDP volatility. Finally, although the contribution of world and country-specific factors
to the variability of industrial production is also sizable for all countries, the role of the factors
in explaining IP cycles diminishes considerably.

Although we find that GDP variance shares explained by the global factor are significant,
these shares are lower than those usually obtained in the IBC literature (see Kose et al., 2003,
Kose et al., 2008, and Crucini et al., 2011, among many others). The explanation could be that
some of the international links are captured in the dynamics of each country factor.

To examine the extent to which allowing for spillovers could explain the lesser role of the
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Table 2: Variance decomposition (spillovers are allowed)

World Country Idiosyncratic
Country Variable .16 Med .84 .16 Med .84 .16 Med .84
GDP 13.8 18.0 224 436 49.5 553 29.2 32.5 35.7

B IP___40__59 82 329 360 392 563 _57.9 604
jap  GDP 92 134 179 185 240 304 572 62.2 666
,,,,,,,,, P___387 57 _80_ 19 30 46 386 91.0 9.2
cgr  CGDP 46 89 144 719 805 870 61 9.8 157
,,,,,,,,, w130 170 212 42 62 92 721 764 802
UK GDP 164 21.0 260 414 50.5 60.3 20.1 28.0 358
,,,,,,,,, P 127 157 189 41 59 79 752 783 8L3
cay  GDP 123 165 208 595 654 709 146 181 218
,,,,,,,,, P96 128 162 148 16.7 187 675 70.5 731
pra  GDP 150 220 302 547 65.6 739 80 117 10.
,,,,,,,,, IP___201 247 208 15 27 43 674 724 768
A GDP 112 17.0 236 448 57.3 69.0 163 25.2 349

1P 170 20.7 247 3.1 4.8 70 706 742 775

Note: Medians, 16% and 84% quantiles of posterior variance shares.

world factor, we also run the model under the assumption that factors are orthogonal. Table 3,
which reports the variance decomposition under orthogonality, evidences a significantly greater
role of the world factor, in line with the existing literature. As noticed by Stock and Watson
(2005), when all cross-dynamics are attributed to a common shock (factors are orthogonal), it

is not possible to separate effects of common shocks from those of spillovers.

5.3 Spillover effects on factor dynamics

To analyze the “spillover” effects of shocks affecting any particular country factor or the global
component, we plot in Figure 6 the IRF's of the global and each of the three major economies’
factors (US, Germany, and Japan) to shocks in the dynamics of the factors.'® The posterior
medians are used to denote the point estimates, while the lower and upper 16% quantiles are
adopted as the error bands.

Some noteworthy features emerge from the plotted IRFs. First, shocks to the world factor
play a significant role in the dynamics of most of the country factors. The US and the Euro-
area countries exhibit the largest reactions to world shocks. Second, the world factor reacts
positively to shocks to the country factors of the US, Japan, the UK, and Canada. Third, the
US is the only country that generates significantly positive spillovers in all 6 other economies,

which confirms the importance the US economic cycle has for the world economy. Fourth, shocks

16The rest of the IRFs are shown in Appendix D
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Table 3: Variance decomposition (spillovers not allowed)

World Country Idiosyncratic
Country Variable .16 Med .84 .16 Med .84 .16 Med .84
GDP 191 21.8 246 392 43.7 48.0 312 34,5 377

B P___57 _ 76 __99 320 356 392 53.7 56.7 595
jap  GDP 218 245 272 118 15.0 192 562 60.2  63.7
,,,,,,,,, IP___46 64 84 04 09 18 904 925 943
cpr  GDP 321 352 385 487 537 584 75 109 150
,,,,,,,,, P 157 184 214 11 27 58 745 783 815
UK GDP 259 28.9 320 437 487 532 188 224 264
,,,,,,,,, P99 121 146 36 48 62 805 83.0 852
cay  GDP 178 204 231 573 619 663 143 17.7 213
,,,,,,,,, P90 111 134 133 154 179 708 73.3 75.7
pra  GDP 504 545 585 186 314 386 75 13.3 266
,,,,,,,,, IP___145 174 207 01 05 23 771 81.3 846
A GDP 464 50.0 538 00 05 21 449 489 528

Note: Medians, 16% and 84% quantiles of posterior variance shares.

to the Japanese factor affect only the dynamics of continental European countries, while shocks
to the UK factor means positive spillovers for all factors except the Japanese one. In sum, the
spillover effects from each of the countries are significant sources of economic co-movements
among the G7 countries.

However, the IRFs shown in Figure 6 and 8 have two important drawbacks: (i) the IRF
refers to non-observable variables; therefore, even though it could be of interest to conceptually
describe the spillover and correlations across countries, they are useless from a policymaker
perspective (observable variables are the information available for the policymaker, and they have
to make inferences about co-movements across countries based on those observables); (ii) one
of the variables included in the VAR is the world factor, which is estimated using data from all
countries; therefore, if a change in one major economy affects other countries contemporaneously,
the model could interpret it as movements in the world factor (even though they are movements
that come from that major economy). A deeper analysis that tries to solve this problem is

presented in the following subsection.

5.4 Spillover effects on observables

The drawbacks we mentioned at the end of the previous subsection do not imply that the
underlying model cannot be used to analyze the dynamics of the observable variables. In this

section, we examine how these variables react to a surprise in the evolution of their partners’
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Figure 6: Impulse response functions
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Note: Posterior median and the 16% and 84% estimated quantiles. The number of periods after a shock refers to

months.

economic variables. In particular, we analyze how national GDP releases affect the forecast of
the evolution of GDP in other countries.

For this purpose, we measure the transmission of a surprise in country j’s GDP (the difference
between the release and the forecast of the model in country j) to the conditional forecasts of
the other countries’ GDPs by comparing two different conditional forecast scenarios. In the first
scenario, we perform a four-period-ahead forecast (from 7'+ 1 to 1"+ 4) for each country, under
the assumption that no additional shocks hit the economies. In the second scenario, we add a
surprise of a size of 0.5 standard deviations at 1"+ 1 to the GDP of country j. The differences

approach the revisions of GDP forecasts due to the unexpected change in the GDP of country
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Figure 7: One-year cumulative changes in GDP growth in response to

0.5 standard deviations of extra growth in the GDP of each country
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Note: Posterior median and the 16% and 84% estimated quantiles. The y axes measure the cumulative growth
difference, in percentage points, between a base forecast scenario and a scenario where the GDP forecast of a

particular country is increased by half a standard deviation.

To estimate conditional forecasts, we follow the conditional forecast algorithm proposed by
Banbura et al. (2015). In particular, the exercise is set as follows: we first estimate the one-
quarter-ahead forecast for each of the variables included in the model. These forecasts are
generated conditional on the information set Zr = {yi¢,i =1,...,N,c=1,...,C,t =1,...,T}
in every draw of the Gibbs sampling and by means of the Kalman filter. The median of all
draws is taken as the point forecast (Q% +1|IT) and is assumed as given.

The first of the scenarios consists in computing forecasts from T+ 1 to T' + 4 conditional on

the estimated GDP point forecast for one of the countries (country “;”). In other words, a new
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information set given by Zpy, = {IT,ﬂgF +1\ZT} is used to conduct those conditional forecasts.
It should be noted that only gjgp Ty is supposed to be known at this step and a new set of
forecasts §IT+ WEr Vi = j, which can be generated at each draw of the sampling by means of
the simulation-smoother algorithm (assuming yﬁf 41,4 # J are missing observations). Forecasts
for T + 2 to T + 4 are then recursively obtained using the Kalman filter. The second scenario
involves assuming a positive surprise in the one-quarter-ahead GDP point estimate forecast of
the same country j. This scenario is computed as in the first scenario, but adding half a standard
deviation to g%+1|IT'

Some clarification is required regarding the forecast computations. First, the difference
between both scenarios is computed as the difference between the forecasts obtained for each
scenario at each draw of the sampler. Of course, we use the same seed to start the sampling
required to compute the forecasts from both scenarios. Second, we use the same parameter
estimates at each iteration of the sampler when generating the two paths of forecasts. Therefore,
the parameters used in each of the scenarios are those obtained and saved at each draw of the
sampler when running the model conditional only on Zr (i.e., when estimating g{r Jrl|ZT). Third,
both scenarios are computed seven times, assuming a positive surprise in each of the countries’
GDP growth, one at a time.

Summarizing, the exercise is performed as follows:

i. Following the estimation strategy described in Appendix B, draw ¢ conditional on Zr

from each posterior distribution, and save each iteration h.

ii. Following the estimation strategy described in Subsection 3.1 (iv), draw the latent factors

¢,(h)
1

conditional on gp(h) and Zp and iterate on the Kalman filter to obtain y} Ty Keep the

median of all h draws for variable j of country ¢ @%CH\IT)'

iii. Compute gjic’(h) . for all variables different from variable j of country ¢ by means of
(TH+1)Zr41,6M)
~ic,(h)

the simulation-smoother algorithm. Compute 3 (T+k[Trs 16"
T+1>

by means of the Kalman filter. Repeat this step but adding half a standard deviation to

)’ Vi, Ve, k = 2, 3,4, recursively

gj% H[Tr (scenario two).
iv. Compute the difference between the two scenarios at each iteration h.

Figure 7 displays the one-year cumulative difference between the two scenarios for the GDP
growth of each of the countries. Some important results can be described. First, positive
innovations in the GDP of all G7 economies never result in a negative impact on the GDP

growth of G7 partners. This means that expectations in G7 countries are positively correlated.
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Second, the countries that generate the largest spillovers after positive surprises in the na-
tional GDP growth rates are the US and UK. Specifically, half a standard deviation of extra
GDP growth in the US and UK could result, after one year, in 0.1-0.4 percentage points of
expected extra growth in all other G7 countries. The relevance of the US economic cycle on
the rest of the world also appears in Dées and Vansteenkiste (2007) and Bayoumi and Swiston
(2009), among many others. Within a structural VAR framework, Poirson-Ward and Weber
(2011) document the importance not only of the US but also of the UK in generating spillover
effects.

The noticeable impact of the UK on the economic cycles of the other G7 countries has been
attributed to two features: (i) the high level of co-movements among the English-speaking G7
countries (examples are Duarte and Holden, 2003, Stock and Watson, 2005, and Camacho and
Perez-Quiros, 2006) and (ii) the relatively larger weight of the UK economy as compared to
other European Union economies.'”

Third, we find a small impact of innovations in Germany’s GDP growth on the conditional
forecasts of the other G7 countries. Poirson-Ward and Weber (2011) also found small spillover
effects of German shocks and suggest that countries that are export-oriented generate smaller
spillovers than those that rely on domestic sources of growth. However, the conditional forecasts
of German GDP show large responses to unexpected changes in other countries’ GDP shocks,
and particularly those in the Euro area.'®

Finally, the export-oriented Japanese economy has suffered from the same limitations as
Germany in generating positive spillovers. In particular, even though the effects from innovations
in Japan’s GDP are larger than those found in the case of Germany, they are at the same time
smaller than those generated in other countries.

Therefore, policymakers attempting to implement stabilization policies should closely mon-

itor unexpected changes in foreign the output growth of foreign economies.

6 Conclusions

Multilevel dynamic factor models are one of the most commonly used frameworks when studying
the evolution of international business cycles and the importance of common external shocks

for national output fluctuation. However, these models do not account for spillover channels

17 At the moment of writing this article, the UK was starting negotiations to leave the Union.
8Bornhorst and Mody (2012) indicate that despite the size of the German economy, its export-oriented growth

generates high GDP volatility due to the high volatility of external demand. They argue that this growth structure

has limited Germany from generating higher growth in other countries.
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across economies. Based on the identification results of Bai and Wang (2015), we eliminate the
factor-independence assumption.

In addition, although some business cycle transmissions occur at higher-than-quarterly fre-
quencies, these models omit this information as it would require dealing with data samples at
monthly and quarterly frequencies. The model outlined in this paper also handles data at mixed
monthly and quarterly frequencies.

We verified that the proposed methodology properly captures common and country-specific
co-movements through a Monte Carlo analysis. Within this setup, we also show that the
spillovers are well addressed.

Finally, we apply the proposed methodology to examining international spillovers across the
G7 economies by analyzing the responses of national factors to shocks in foreign factors and by
quantifying the changes in national GDP expectations to unexpected positive changes in foreign
GDPs.

Our results are summarized as follows. First, we find that the common-to-all factor represents
a relevant share of the output variances. However, its size is smaller than usually found in the
literature because a sizable portion of this share is accounted for by the international spillovers.
This highlights the importance of the spillover channel as a source of economic co-movement
among the G7 economies.

Second, positive shocks to output growth in each of the G7 countries never negatively affects
other G7 economies, which agrees with a pro-cyclical channel of international transmission of
output growth expectations. In this context, the US and UK generate the largest spillovers
while the two export-oriented economies, Japan and Germany, produce the smallest spillovers.

Therefore, policymakers attempting to implement stabilization policies should closely mon-

itor unexpected changes to the output growth of foreign economies.
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A Derivation of VAR process under the stacked approach

A.1 VAR(1) process with stacked observation (3 monthly variables):

mi

Under the classical representation, a VAR(1) process including three variables (z7

m2
, x?, and

x'3) can be written as
m
M o111 P12 p13\ [ e
— m
2l = P21 pa2 P3| | Z | T |
me
il $31 P32 ¢33) \@) €3
where
m 2
e 0 o;, 0
em2 | ~ NID Of-1 0 0522 0
€ms 0 0 0 o}
Going from the monthly observations of 271, 22, and z™3 to the stacked quarterly vectors x{*,

zf?, and zf® (now t is the quarterly time index), the VAR(1) process can be written for (¢, 1),

(t,2), and (¢,3) as

xfh 11 P12 ¢uz\ [z €
(t,1) — e | = dn ¢ dus | [2Pis| T (29)
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where €', €}*, and €}® are the stacked vectors of the innovation errors. It should be noted

that variables from both the second and the third month of the quarter, (¢,2) and (¢,3), could
be written in terms of the last month of the previous quarter, (¢t — 1,3). This can be done by
substituting (zf', z{3, z{ )" in equation (30) by the first equation and (z}, 2%, #{%)” in equation
(31) by the second equation. After some algebra, a VAR(1) process can be written using the
a
t

stacked vectors x{',z{*, and z} as

Xg = Tth—l + Rgt 3
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with matrices
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A.2 VAR(2) process with stacked observation (3 monthly variables):

Under the classical representation, a VAR(1) process including three variables (z7"

x"3) can be written as
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Using the same reasoning developed in Appendix A.1 and after some algebra, a VAR(2) process

can be written using the stacked vectors z{', x>

B xl and xf® as
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'21 Zl P35 ¢jitbis + Zl V33 '21 Zl $3j¢jii3 + 21 P3ithi3 + 21 Piztsi
Jj=1li= i= j=li= = i=
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1 0 0 0 0 0 0 0

o11 1 0 b12 0 0 13 0

1'23:1 P1idin + P o 1 :)Zl P1idi2 + P12 P12 0 1'23:1 Pridis + Y13 b3

0 0 O 1 0 O 0 0

R= P21 0 0 B2 1 0 o3 0
Zi $2iPi1 + Y21 P21 O ﬁ:l Pipio + a2 o2 1 Zijl Poidis + a3 dos

0 0 0 0 0 0 1 0

®31 0 0 b32 0 0 b33 1

ﬁ:l ¢3i¢i1 + P31 @31 0 §:1 P3idiz + P32 P32 0 zi P3idis + V33 b33

B Sampling parameters given the factors

B.1 Loading factors

[

The dynamics of monthly variables are given by (1) and (2). As noted in Kose et al. (2003), if

we know the true factors, each monthly variable equation can be evaluated as an independent

regression with Gaussian autoregressive errors. Thus, one possibility would simply be

to estimate

the factor loadings as if the latent factors and the remaining parameters were known. Relying

on Chib and Greenberg’s (1994) Bayesian procedure, which deals with AR(p) errors, we start

by pre-multiplying both sides of equation (1) by (1 —®*(L)), where ®¢(L) = ¢'°L —

.. QleLpi

and L is a lag operator, in order to write the following quasi-differentiated equation:

g‘irc — (ﬁzf /820) F:_c + E:’_c7
where the autoregressive part of the residuals disappears and
= (L= L — ... = g L7y,

~ . . . /
Fie = (1= 6L~ ...~ g L) [Fr fe .

(32)

Note that f‘ic need the superscript ¢ since autoregressive coefficients depend on each of the

variables. Under this setting, it is possible to choose for the loading b* = [ﬁfg ﬁw} the usual

normal density priors p(b®) ~ N (ﬁ, ﬁ), resulting in the following conditional posterior,

which is also normal:

p(biC‘thfcu ()beic) ~ N (biwv Biw) )
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where

3T
B — Be _1+J;022F36/Fica (33)
T=1
3T
, S Fic/ ~i
b = B! (Bw bw+a;32Fi“sz> : (34)
T=1

The case of quarterly variables is slightly harder to deal with since it is equation (25) that
needs to be quasi-differentiated. It should be noted that now variables are expressed using the
stacked representation for factors with time index ¢t. After pre-multiplying both sides of (25) by
(1 — ®j5(L)), it is possible to write

e = (pie pe)FF 4o, (35)
where the autoregressive part of the residuals disappears and
= (1= ¢L—...— ¢ LP)zif, (36)

y 3. . S
o= | SR L)
‘7:

Fve = (1= ¢i°L — ... — ¢iCLP)F
t,f. 1 p‘z ta.] fOI‘ j — 1,2,3-
Ji§ = (L= FL—... = L) ff;

Note that the lag operator acts over the time index ¢ (i.e., LX;; = X;—1 ;). The same kinds
of priors as the ones used for the loading factors of monthly variables can be adopted just

substituting the quasi-differentiated variables (Fi¢, i) by (Fi¢, #i¢) in (33) and (34).1?

B.2 Autoregressive coefficients and innovation variances for observables

Drawing the autoregressive coefficients for the idiosyncratic components described in equation

. !/
(2), dic = (¢ilc o ¢;§) , does not involve any particular problem once the idiosyncratic part

2

(ui€) and the innovation variance 0%, are treated as if they were known.?’ Again, following

Chib and Greenberg (1994), it is possible to posit the usual conjugate prior density p(®%) ~
N (51'6,72'071) Iy, where Iy4 is an indicator function for stationarity, and sample from the
posterior distribution of ® using a Metropolis-Hastings algorithm.

Conditional on the AR coefficients, the factor loadings, and the latent factors, the estimation

2

of the innovation variances, (oaic and 0727,.6 ), is straightforward. Setting the following inverse

“Note the summation in both (33) and (34) is now from ¢ to T
200trok and Whiteman (1998) give an excellent and detailed explanation for the AR and the innovation vari-

ances parameter sampling.
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gamma density prior,
2\ d 2 v
p(UEic) = p(aniC) ~1G <27 2) >

the conditional posterior distributions are

T+ 3T §+¢&°
p(UgiC‘vafc7(p—g2. ) ~ IG s ) te )
E'LC 2 2
v+T §+1°
p <O'3ic‘Fw7fcv(p—g§iC) ~ IG < 2 b 2 ) 9

where
3

gie — (g}'rc _ (55 ﬁic) ]?‘ic>2,

!

3
I
-

g

o

Il
E

(31— (5ic ) ).

1

-
Il

B.3 VAR coefficients conditional on factors

Once the world and country factors are assumed as given, the estimation of the VAR process

that describes the dynamics of those factors is straightforward. Taking advantage of Bai and

Wang’s (2015) matrices notation, a VAR(p) generalization of equation (7) can be written as?!

G=HA+¢ or vec(G) = (Ii11c) ® H) o + vec(),

where vec(§) ~ N(0,Q ® I(3r_p)) and

F/(p-l-l) F; ... F}
G=| | . H=| i
FéT F/(3T—1) T FI(ST—p)
o(1) bl
A= : , £E= : , a = vec(A). (37)
o(p)’ féT

F., ®(k), and & were already defined in equation (7). As was mentioned, for identification
reasons, the variance—covariance matrix for factor innovations is assumed to be known and
diagonal (@ = Ic41). Therefore, it is feasible to set a normal density prior, p(a) ~ N (@, A _1),

with a normal conditional posterior, as

p(a|Q,G) ~ N (o, A™") I,

2INote that in order to study the dynamics of the factors, we don’t need the stacked representation as it is

possible to work using a monthly time frequency.
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where I, is an indicator function for stationarity and

=
|

A+ Qe (H'H),
A

! (K_la—i— Q@ '® H)Uec(G)) .

C Starting and prior values

We follow Crucini et al. (2011) and set priors for all factor loading coefficients as N (0, 10), while
the autoregressive polynomial parameter’s prior is N (0, ¥;), where 3; = diag((.5)?, (.5)', ..., (.5)@i~1).
As explained in Kose et al. (2003), this kind of prior embodies the notion of no serial correlation
in the growth rates. The prior of the variances is quite diffuse, being IG(6,0.001). Regarding
the prior for the VAR coefficients, we use a variation of a Minnesota prior (Litterman, 1979),

centered on the assumption that each factor follows an independent stationary process.??

(k)

Naming each value of the column vector « (described in 37) as ;;", where the subscript and

the superscript correspond to those of qﬁz&) (k=1,...,p), the VAR coefficients are assumed to

have the following prior moments:

0.4 i=j,k=1 (first own lag,)

2 = Y02 i k=2 (second own ) @)

0 otherwise,

(k)
ij

element corresponding to o™ has the form

while A is diagonal and the o ij

A
?0 if i = §,Vk,
(k) _
%5 T Y Mot (05\E ., (39)
207 (S if i # j,Vk,
k Oc;

where A\g = A1 = 0.15. It should also be noted that (%)2 =1 given that Q = [(c11).

Stating values for factors come from an N (0, 1) distribution. Using those factor values, load-
ing factors and variance starting values result from computing the OLS regression of equations
(23) and (25), depending on whether the variable is quarterly or monthly. For the VAR process,
values for the main diagonal of ®(1) and ®(2) are set, respectively, at 0.4 and 0.2, while all

off-diagonal values and autoregressive parameters for innovation errors are set to zero.

22 As indicated in Karlsson et al. (2013), the Minnesota prior uses independent normal distribution for each
regression coefficient on the lags, which is appropriate when @ is diagonal. The author also remarks that for
computational reasons, this kind of prior takes the error variance to be known (although data-based), which is a

valid assumption in our case, given the identification scheme (Q = Ic41)
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D Impulse response functions
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