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Abstract

To analyze the international transmission of business cycle fluctuations, we propose a new

multilevel dynamic factor model with a block structure that (i) does not restrict the factors

to being orthogonal and (ii) mixes data sampled at quarterly and monthly frequencies. By

means of Monte Carlo simulations, we show the high performance of the model in comput-

ing inferences of the unobserved factors, accounting for the spillover effects, and estimating

the model’s parameters. We apply our proposal to data from the G7 economies by ana-

lyzing the responses of national factors to shocks in foreign factors and by quantifying the

changes in national GDP expectations in response to unexpected positive changes in foreign

GDPs. Although the share of the world factor as a source of the international transmission

of fluctuations is still significant, this is partially absorbed by the spillover transmissions. In

addition, we document a pro-cyclical channel of international transmission of output growth

expectations, with the US and UK being the countries that generate the greatest spillovers

and Germany and Japan being the countries that generate the smallest spillovers. There-

fore, policymakers should closely monitor the evolution of foreign business cycle expectations.

Keywords: International business cycles; Mixed frequency data; Bayesian estimation, Spillover

effects

JEL Classification: E32, C22, F42, F41
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Non-technical summary

The 2008 global financial crisis shed light on—once again—the importance of international busi-

ness cycle linkages when analyzing national output fluctuations, even when the largest economies

in the world are the ones being analyzed. Disentangling the contributions of internal and common

external shocks to domestic output variability, together with the identification and quantifica-

tion of spillover effects from foreign shocks to the domestic economy, have been an important

subject of research in recent years.

To analyze these questions, the use of dynamic factor models with a block structure (e.g.,

Kose et al., 2003) has been widely extended. These models assume that fluctuations in a coun-

try’s aggregates are basically explained by a component common to all countries (interpreted

as the international business cycle, IBC hereafter), by a country-specific component (the na-

tional business cycle), and by idiosyncratic dynamics specific to each variable. For identification

reasons, orthogonality is assumed between unobserved factors. However, as noticed by Stock

and Watson (2005), this assumption implies that the approach is not appropriate for distinc-

tively identifying responses to common shocks from spillover effects, given that all cross-country

dynamics come from the world component.

A second issue that emerges in the literature relates to the time frequency under which the

analysis is conducted. In general, empirical applications rely on annual or quarterly databases,

which agree with gross domestic product (GDP) data availability. However, this implies as-

suming that the international transmission of business cycle linkages applies only at these large

frequencies, omitting from the analysis the valuable information of economic indicators that are

sampled at higher frequencies.

Aiming to handle both of the abovementioned concerns, we propose a new framework that

deals with both mixed frequencies in dynamic factor models (MF-DFMs) and block structures

where factors are not restricted to being orthogonal to each other. We deal with mixed fre-

quencies by “stacking” quarterly and monthly economic indicators (see Blasques et al., 2016).

In addition, we deal with spillover effects in multilevel dynamic factor models by allowing de-

pendence across the factors, as in Bai and Wang (2015), who show that in this framework the

factor orthogonality assumption is not needed for identification purposes. Finally, we rely on

Bayesian techniques to estimate the model’s parameters as in Koopman and Pacce (2016), by

using a Metropolis–Hasting within Gibbs sampling algorithm.

The proposed methodology is evaluated by conducting a Monte Carlo analysis. Results

suggest that adding quarterly variables (one or more) in the estimation procedure always results
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in a gain in terms of estimation accuracy, although improvements diminish with the number

of monthly variables per country already included. Our Monte Carlo results also illustrate the

high performance of our methodology in capturing the spillover effects.

To illustrate our approach empirically, the multilevel MF-DFM is applied to estimate both

the IBC and country-specific cycles at monthly frequencies from January, 1980 to December,

2018 for countries belonging to the G7. Within this framework, we find the following notable

results. First, the estimated factors are able to capture most of the major economic events

that occurred during the sampled period. Second, the share of output variance explained by the

common component is significant, albeit lower than that usually obtained in the IBC literature, a

result directly related to the assumption of non-orthogonality across factors. Third, we measure

the spillover effects in IBC dynamics by computing the impulse response functions (IRFs) of each

factor to shocks in the dynamics of the other factors. We find evidence of a rapid transmission of

international shocks, regardless of whether the shock affects the common factor or the country-

specific factors. Fourth, we address the extent to which shocks to national GDP affect foreign

GDP dynamics by conducting a conditional forecast analysis in line with Banbura et al. (2015).

We find that a positive innovation in the GDP of one of the G7 economies never results in a

negative impact on the GDP growth of the other G7 partner countries. In addition, we find that

the US and the UK are the countries with the largest positive effects on the other economies,

whereas shocks to German and Japanese GDPs only have a small impact on the output of the

other G7 countries.
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1 Introduction

Disentangling the contribution of internal and common external shocks to domestic output

variability, together with the identification and quantification of spillover effects from foreign

shocks to the domestic economy have been an important subject of research in recent years.

Overall, the literature supports the finding that common and country-specific shocks exhibit

a larger role in explaining business cycle fluctuations than spillover effects (Monfort et al.,

2003; Stock and Watson, 2005; Dées and Vansteenkiste, 2007). In this context, the analysis of

international co-movements across economies typically relies on two key assumptions.

First, the model framework is a dynamic factor model with block structures—also known as

a multilevel dynamic factor model—as in Gregory et al. (1997), Kose et al. (2003), and Crucini

et al. (2011), among others. These models assume that fluctuations in countries’ aggregates are

basically explained by a component common to all countries (interpreted as the international

business cycle, IBC hereafter), by a country-specific component (the national business cycle), and

by idiosyncratic dynamics specific to each variable. Although these models assume orthogonality

between unobserved factors for identification reasons, Stock and Watson (2005) show that they

fail to accurately identify responses to common shocks from spillover effects because all cross-

country dynamics are restricted to coming from the world component.

Second, the empirical applications rely on annual or quarterly databases, which agree with

the data availability of Gross Domestic Product (GDP) as it is the most relevant measure of

economic activity. However, this implies assuming that the international transmission of business

cycle linkages applies only at the level of these large time periods, omitting from the analysis

the valuable information of economic indicators that are sampled at higher frequencies. Thus,

there is a potential need for dynamic factor models with block structures to combine data from

different frequencies and to exploit the analysis of the international transmission of business

cycle shocks at shorter frequencies.1

Aiming to handle both of the abovementioned concerns, we propose a new framework that

deals with both mixed frequencies in dynamic factor models (MF-DFMs) and block structures

where factors are not restricted to being orthogonal between each other. We deal with mixed

frequencies by “stacking” quarterly and monthly economic indicators as in Blasques et al. (2016).

1The benefits of enlarging a model to deal with mixed frequencies when analyzing the dynamic propagation

of shocks has already been shown by Eraker et al. (2014) and Foroni and Marcellino (2016) in the context of

vector autoregression (VAR) models. To the best of our knowledge, only Aruoba et al. (2011) allow for mixed

frequencies to analyze international business cycles in a hierarchical factor model, which does not handle spillover

effects.
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In addition, we deal with spillover effects in multilevel dynamic factor models by allowing de-

pendence across the factors as in Bai and Wang’s (2015), who show that the factor orthogonality

assumption is a sufficient but not necessary condition for identification purposes. Finally, we

rely on Bayesian techniques to estimate the model’s parameters as in Koopman and Pacce’s

(2016) by using a Metropolis–Hasting within Gibbs sampling algorithm.2

To evaluate the performance of our proposal, we conduct a set of Monte Carlo simulations

whose data-generating processes are characterized by data sampled at quarterly and monthly

frequencies and spillover effects. Our results suggest that adding quarterly variables in the

estimation procedure always results in a gain in terms of estimation accuracy, as measured by

the R-squared of regressing the estimated factor on the true ones. Nevertheless, we also find

that these improvements diminish with the number of monthly variables that are included in

the model. Our Monte Carlo results also illustrate the high performance of our methodology in

capturing the spillover effects.

To illustrate our approach empirically, the multilevel MF-DFM is applied to estimate both

the IBC and country-specific cycles at monthly frequencies from January, 1980 to December,

2018 for countries belonging to the G7. Apart from quarterly national GDP, we follow Stock

and Watson (1989) and enlarge the set of indicators with industrial production, retail sales,

employment, and household income (whenever available). Within this framework, we find the

following notable results. First, the estimated factors are able to capture most of the major

economic events occurring during the sample period. Second, the share of output variance

explained by the common component is significant, albeit lower than that usually obtained

in the IBC literature. We show that this result is directly related to the assumption of non-

orthogonality across factors because a large portion of the dynamics explained by the world

factor is translated to each of the country factors when spillovers are allowed.

Third, we measure the spillover effects in IBC dynamics by computing the impulse response

functions (IRFs) of the global and each of the country-specific factors to shocks in the dynamics

of the other factors. Our findings suggest a rapid transmission of the international shocks,

regardless of whether the shock affects the common factor or the country-specific factors. In

particular, shocks hitting the global factor lead to pro-cyclical country-specific reactions, which

indicates a significant role of the world factor in the dynamics of each of the G7 economies. In

addition, we find spillovers emerging from each of the domestic economies to foreign economies,

the US being the only country that generates a positive effect in all other countries. These

2An additional advantage of our proposal is that it allows for missing observations, meaning series of different

lengths can be included.
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results are in line with Diebold and Yilmaz (2015), Antonakakis et al. (2016), and Carstensen

and Salzmann (2017), who also find that international spillovers play an important role in

national business cycles dynamics.

Fourth, we address the extent to which shocks to national GDP affect foreign GDP dynamics

by conducting a conditional forecast analysis in line with Banbura et al. (2015). In particular,

we compare two different conditional forecast scenarios. In the first scenario, we compute the

GDP point forecasts T + 1 for a given country, where T is the last quarter of available GDP

data. Conditional on this forecast, we also compute the forecasts from T + 1 to T + 4 for all of

the G7 economies. In the second scenario, we start from the GDP point forecast T + 1, but we

add to it half a standard deviation and we compute a second set of conditional forecasts from

T + 1 to T + 4 for all of the G7 economies. We interpret the cumulative difference between the

two scenarios as the potential impact that an economic innovation in one particular country has

on other economies.

As a result of these conditional forecast comparisons, we find that a positive innovation in

the GDP of each of the G7 economies never results in a negative impact on the GDP growth of

the other G7 partner countries. In addition, we find that the US and UK are the countries with

larger positive effects on the other economies, whereas shocks to German and Japanese GDPs

only have a small impact on the output of the other G7 countries.

The policy implications of our results are clear: given the relevance of the international

transmission of business cycle effects that we find in this paper, stabilization policies aimed

at reducing fluctuations and maintaining healthy levels of economic growth should also closely

monitor the evolution of foreign business cycles.

The paper is organized as follows. Section 2 presents our multilevel mixed-frequency dynamic

factor model. Section 3 discusses the estimation strategy. Section 4 provides the results of the

Monte Carlo simulations. Section 5 describes the empirical application and presents the results.

Section 6 offers some concluding remarks. Finally, the Appendix provides technical details and

some additional results.

2 Methodological framework

2.1 The model

Multiple dynamic factor models with a block structure are the commonly used framework when

different levels of co-movements are assumed among economic variables. For instance, Gregory
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et al. (1997), Kose et al. (2008), and Crucini et al. (2011) assumed a two-level structure in

order to characterize the business cycle at an international and at a country level. The model

presented in this paper is an extension of this kind of multilevel representation.

Let τ = 1, · · · , T represent time periods; let c = 1, . . . , C stand for countries; let nc be the

number of variables for each country c; and let N =
∑C

c=1 nc be the total number of variables

included in the model. The source of variation of any observable variable (yicτ ), with i = 1, . . . , nc,

is assumed to depend on a factor Fwτ (the “world factor”) common to all countries, on a group-

specific component f cτ (the “country factor”), and on the idiosyncratic dynamics of each variable

(uicτ ).3 Therefore, the model can be specified as

yicτ = βicwF
w
τ + βicf cτ + uicτ , (1)

where both βicw and βic are the loading factors, capturing the sensitivity of each variable to

the latent factors. As usual, uicτ is assumed to be normally distributed and possibly serially

correlated following a pic-order autoregression:

uicτ = φic1 u
ic
τ−1 + · · ·+ φicpicu

ic
τ−pic + εicτ , (2)

where

E
[
εicτ ε

jk
τ−s

]
=


σ2
εic

for i = j , c = k and s = 0

0 otherwise

. (3)

Putting all observable variables and innovations into twoN×1 vectors Yτ =
[
y11τ , . . . , y

n11
τ , . . . , y1Cτ ,

. . . , ynCCτ

]′
and Uτ =

[
u11τ , . . . , u

n11
τ , . . . , u1Cτ , . . . , unCCτ

]′
, equation (1) could be written in the

following matrix form:

Yτ =
[
Bw Bc

]
Fτ + Uτ , (4)

where Fτ =
[
Fwτ , f

1
τ , . . . , f

C
τ

]′
; Bw =

[
Bw

1
′ · · · Bw

C
′
]′

, with Bw
c =

[
βicw , . . . , β

ncc
w

]′
; and Bc

is a diagonal matrix with
[
B1 · · · BC

]′
in the main diagonal, with Bc =

[
βic, . . . , βncc

]′
.

Regarding the unobserved component dynamics, the common assumption in the literature is

that each factor could follow an independent autoregressive process of order q. Considering a

3According to the statistical properties of our database, we assume that the observable variables are expressed

in terms of growth rate.
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VAR(1) specification, the process could be written as
Fwτ

f1τ
...

fCτ

 =


φw 0 . . . 0

0 φ1 . . . 0
...

...
. . .

...

0 0 . . . φC




Fwτ−1

f1τ−1
...

fCτ−1

+


εwτ

ε1τ
...

εCτ

 , (5)

where the factors’ innovations are supposed to be normally distributed and independent at all

leads and lags, 
εwτ

ε1τ
...

εCτ


iid∼ N




0

0
...

0

 ,

σ2w 0 . . . 0

0 σ21 . . . 0
...

...
. . .

...

0 0 . . . σ2C



 . (6)

By assuming independence among {FWτ , f1τ , . . . , f
C
τ } (all the off-diagonal elements of the VAR

equal to zero) and some sign restrictions, factors are separately identified conditional on a scale

normalization. However, Bai and Wang (2015) have shown that orthogonality between factors

is a sufficient, but not necessary, condition for identification purposes. In other words, the VAR

specification could be generalized by changing equation (5) to
Fwτ

f1τ
...

fCτ


︸ ︷︷ ︸
Fτ

=


φww φw1 . . . φwC

φ1w φ11 . . . φ1C
...

...
. . .

...

φCw φC1 . . . φCC


︸ ︷︷ ︸

Φ(1)


Fwτ−1

f1τ−1
...

fCτ−1


︸ ︷︷ ︸
Fτ−1

+


εwτ

ε1τ
...

εCτ


︸ ︷︷ ︸
ξτ

. (7)

without losing the possibility of identifying the unobserved factors. According to Proposition 3

in Bai and Wang (2015), defining a dynamic factor model as in (1), (2), (7), and (6), the factor

model is uniquely identified just setting σ2w = σ21 = · · · = σ2C = 1, with Bw
1 and {Bc}Cc=1 being

lower triangular with strictly positive diagonal terms, and
[
Bw
c Bc

]
being full column rank

matrices for c = 1, . . . , C. Assuming only one world factor and one country factor per country,

the sign identification is similar to that in Kose et al. (2003), Crucini et al. (2011), and many

others. Taking advantage of the mentioned proposition, the present paper assumes a dynamic

for the factors similar to equation (7), where “spillover” effects between factors can be captured.

2.2 Mixed frequencies

In many empirical applications, the economic indicators yicτ are sampled at both quarterly and

monthly frequencies. In this case, at least two possibilities emerge: either the model is set at
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the lower frequency (quarterly) and some transformation is done to the higher-frequency series

(monthly), or a mixed-frequency strategy is followed.

When the first approach is selected, a common way to proceed is to aggregate the monthly

variable at a quarterly frequency. Assuming τ refers to months, yicτ in equation (1) would be

quarterly aggregated as

yict = ω(L)yicτ = yicτ + yicτ−1 + yicτ−2 (8)

for τ = 3, 6, . . . , T /3, where t = τ/3 refers to a quarter and ω(L) = 1 +L+L2 (L being the lag

operator). Therefore, equation (1) could be written as

yict = βicwF
w
t + βicf ct + uict , (9)

where Fwt , f
c
t , and uict are quarterly aggregated. This kind of representation would lead to

writing the transition equation at a quarterly frequency and, consequently, the VAR(1) process

of equation (7) would be equal to

Ft = Φ(1)3Ft−1 + ξ∗t = CFt−1 + κt, (10)

where C = Φ(1)3. Foroni and Marcellino (2016) showed that, when quarterly aggregated,

the term κt in equation (10) is a vector moving average of order 1 (VMA(1)) process and,

therefore, the transition equation would follow a first-order vector autoregressive moving average

(VARMA(1,1)) process as

Ft = CFt−1 + ςt + Υςt−1, (11)

where ςt ∼ (0,Ω). As stated in Foroni and Marcellino (2016), an econometrician would be able

to estimate Ĉ, Υ̂, and Ω̂, but from these matrices she could not uniquely identify Φ.4 It should

be noted though, that when Φ is diagonal—as in the case of no spillover between factors—

this identification problem does not emerge. Nonetheless, Foroni and Marcellino (2016) also

correctly points out that a VARMA(1,1) model like the one in equation (10) would, in general,

be approximated by a finite order VAR, creating further identification issues for the monthly

parameters.

In other words, when it is believed that monthly and quarterly variables contain relevant

information regarding the linkage between countries’ business cycles, setting the model at the

4Foroni and Marcellino (2016) correctly indicate that the knowledge of C = Φ3 does not, in general, allow

uniquely identifying the parameters of Φ since matrix multiplication creates non-linear combinations of the original

parameters.
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lower frequency would create serious identification issues for recovering factor dynamics and

their mutual relationships. Therefore, a mixed-frequency setup could potentially be a better

strategy to follow.

2.2.1 Stacked approach with monthly and quarterly variables

We follow the stacked approach representation proposed by Blasques et al. (2016) to allow a

dynamic factor model with a block structure and spillovers across factors for mixing frequencies.5

These authors show that under the state-space representation, it is possible to deal with the

mixing frequencies problem by stacking the higher-frequency data (monthly) into a vector of

observations that operates at the lower frequency (quarterly), while all of the high-frequency

information is still preserved.

In Blasques et al.’s (2016) notation, monthly variables ỹτ (τ is the monthly time index) can

be stacked into a quarterly observed vector yt (t is the quarterly time index) of the form

yt =


yt,1

yt,2

yt,3

 =


ỹ3(t−1)+1

ỹ3(t−1)+2

ỹ3(t−1)+3

 , (12)

where yt,k is the k-th element of yt, t refers to the quarter the monthly observations belong to,

and k = 1, 2, 3 indicates the month within quarter t. As an example, yt,1 will always refer to

the first month of the quarter, meaning that depending on the quarter that t is referring to, the

months will possibly be January, April, July, or October. Therefore, if the quarterly timespan

is t = 1, . . . , T , the length of the monthly series will be τ = 1, . . . , 3T .

Within this context, autoregressive processes could be written with the stacked approach

through a vector autoregressive (VAR) process where yt depends on its own lags. As an example,

an AR(1) process ỹτ = φyỹτ−1 + ε̃τ , where ε̃τ
iid∼ N(0, σ2ε), could be written using (12) as

yt = T ∗yt−1 +Rεt, (13)

where

T ∗ =


0 0 φy

0 0 φ2y

0 0 φ3y

 , R =


1 0 0

φy 1 0

φ2y φy 1

 . (14)

5Koopman and Pacce (2016) also use this approach to handle mixing frequencies in a non-linear single dynamic

factor model within a Bayesian framework.
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A quarterly variable (xt) is added easily in (13) by noting that monthly observations already

operate at a quarterly frequency. Assuming xt also follows an AR(1) process given by xt =

φxxt−1 + ηt, with ηt
iid∼ N(0, σ2η), Blasques et al. (2016) propose the following mixed-frequency

representation:
xt

yt,1

yt,2

yt,3

 =


φx 0 0 0

0 0 0 φy

0 0 0 φ2y

0 0 0 φ3y




xt−1

yt−1,1

yt−1,2

yt−1,3

+


φx 0 0 0

0 1 0 0

0 φy 1 0

0 φ2y φy 1




ηt

εt,1

εt,2

εt,3

 . (15)

2.2.2 Stacked framework for VAR processes

Continuing the line of reasoning detailed previously, we delineate how to adapt the stacked

framework to deal with VAR processes. Consider a VAR(1) process with two monthly variables,

y1τ and y2τ . Under the classical representation, this process could be written asy1τ
y2τ

 =

φ11 φ12

φ21 φ22

y1τ−1
y2τ−1

+

ε1τ
ε2τ

 , (16)

where ε1τ
ε2τ

 ∼ NID
0

0

 ,

σ2ε1 0

0 σ2ε2

 . (17)

Using equation (12), all monthly observations and innovations {y1τ , y2τ , ε1τ , ε2τ}3Tτ=1 can be

written as stacked quarterly vectors {y1t , y2t , ε1t , ε2t }Tt=1 (remembering that t is a quarterly time

index). With this notation, the VAR(1) process characterized in (16) for (t, 1), (t, 2), and (t, 3)

can be described as

(t, 1) −→


y1t,1
y2t,1

 =

φ11 φ12

φ21 φ22

y1t−1,3
y2t−1,3

+

ε1t,1
ε2t,1

 , (18)

(t, 2) −→


y1t,2
y2t,2

 =

φ11 φ12

φ21 φ22

y1t,1
y2t,1

+

ε1t,2
ε2t,2

 , (19)

(t, 3) −→


y1t,3
y2t,3

 =

φ11 φ12

φ21 φ22

y1t,2
y2t,2

+

ε1t,3
ε2t,3

 , (20)

It should be noted that both the variables for the second month (t, 2) and the third month (t, 3)

of the quarter could be written in terms of the last moth of the previous quarter (t− 1, 3). This

can be done by substituting (y1t,1, y
2
t,1)
′

in equation (19) by equation (18). The obtained result
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could then be used to replace (y1t,2, y
2
t,2)
′

in equation (20). After some algebra, it can be shown

that y1t,2
y2t,2

 =


2∑
i=1

φ1iφi1
2∑
i=1

φ1iφi2

2∑
i=1

φ2iφi1
2∑
i=1

φ2iφi2


y1t−1,3
y2t−1,3

+

φ11 φ12

φ21 φ22

ε1t,1
ε2t,1

+

ε1t,2
ε2t,2

 , (21)

y1t,3
y2t,3

 =


2∑
j=1

2∑
i=1

φ1jφjiφi1
2∑
j=1

2∑
i=1

φ1jφjiφi2

2∑
j=1

2∑
i=1

φ2jφjiφi1
2∑
j=1

2∑
i=1

φ2jφjiφi2


y1t−1,3
y2t−1,3

+


2∑
i=1

φ1iφi1
2∑
i=1

φ1iφi2

2∑
i=1

φ2iφi1
2∑
i=1

φ2iφi2


ε1t,1
ε2t,1

+

φ11 φ12

φ21 φ22

ε1t,2
ε2t,2

+

ε1t,3
ε2t,3

 . (22)

Using (18), (21), and (22), the VAR(1) process can be written in matrix form through the

stacked vectors y1t , y
2
t , ε

1
t , and ε2t as

Y q
t = T ∗Y q

t−1 +Rζt,

with matrices

Y q
t =

(
y1t,1 y1t,2 y1t,3 y2t,1 y2t,2 y2t,3

)′
, ζt =

(
ε1t,1 ε1t,2 ε1t,3 ε2t,1 ε2t,2 ε2t,3

)′
,

T ∗ =



φ11 φ12
2∑
i=1

φ1iφi1
2∑
i=1

φ1iφi2

0(6×2)

2∑
j=1

2∑
i=1

φ1jφjiφi1

φ21

0(6×2)

2∑
j=1

2∑
i=1

φ1jφjiφi2

φ22
2∑
i=1

φ2iφi1
2∑
i=1

φ2iφi2

2∑
j=1

2∑
i=1

φ2jφjiφi1
2∑
j=1

2∑
i=1

φ2jφjiφi2



,

R =



1 0 0 0 0 0

φ11 1 0 φ12 0 0
2∑
i=1

φ1iφi1 φ11 1
2∑
i=1

φ1iφi2 φ12 0

0 0 0 1 0 0

φ21 0 0 φ22 1 0
2∑
i=1

φ2iφi1 φ21 0
2∑
i=1

φ2iφi2 φ22 1


,
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and ζt
iid∼ N(0(6,1),Σ), where Σ = diag(σ2ε1 , σ

2
ε1 , σ

2
ε1 , σ

2
ε2 , σ

2
ε2 , σ

2
ε2). In Appendix A, it is shown

how to derive VAR(1) and VAR(2) processes when increasing the number of variables involved

in the VAR.

2.2.3 Stacking the multiple dynamic factor model with a block structure

Models trying to capture the evolution of both the international and country cycles have, in

general, been studied restricting observable variables to being expressed in the same unit of

measure (e.g., annual, quarterly, or monthly growth rate) and having the same length. To the

best knowledge of the authors, the only exception in the literature is Aruoba et al. (2011), who

estimate a hierarchical multicountry model using quarterly and monthly variables.

Based on a dynamic factor model that allows for mixed-frequency data and missing obser-

vations, as proposed by Mariano and Murasawa (2003), Camacho and Perez-Quiros (2010), and

Aruoba and Diebold (2010), among others, they first estimate each country factor and then

decompose these factors into a component common to all and an idiosyncratic component. De-

parting from this approach, we propose an alternative way to deal with mixed frequencies in the

context of a multiple dynamic factor model with a block structure, which is also able to deal

with missing observations. By contrast, our approach has the important feature of fitting the

model to deal with non-orthogonal factors, allowing for the possibility of computing “spillover”

effects.

Mixed-frequencies are allowed in dynamic factor models by using the stacked approach al-

ready shown in Subsection 2.2.1. Beginning with monthly variables, the dynamics can easily be

represented in terms of monthly factors as in equation (1). In order to simplify exposition, we

assume that uicτ = εicτ , which implies

yicτ = βicwcF
w
τ + βicf cτ + εicτ , (23)

where εicτ
iid∼ N

(
0, σ2

εic

)
.

Let us assume that we add a quarterly variable for a country, c (xict ). Its quarterly dynamics

will be approximated by the monthly dynamics of the common, the country, and the idiosyncratic

components as follows:

xict = βic1,wF
w
3(t−1)+1 + βic2,wF

w
3(t−1)+2 + βic3,wF

w
3(t−1)+3 +

βic1 f
c
3(t−1)+1 + βic2 f

c
3(t−1)+2 + βic3 f

c
3(t−1)+3 + ηict , (24)

where ηict
iid∼ N

(
0, σ2

ηic

)
. Blasques et al. (2016) impose the simplifying assumption that the

loading factors are fixed for all of the months of the respective quarter, which implies that
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βick,w = βicw , and βick = βic for k = 1, 2, 3.6 When this is the case, equation (24) could be written

using the stacked approach for the factors as

xict =
(
βicw βicw βicw

)
F̂wt +

(
βic βic βic

)
f̂ ct + ηict . (25)

Including both monthly and quarterly variables within the model is straightforward. Assume,

for exposition reasons, a two-country multilevel model with one monthly and one quarterly

variable per country, where factors follow a VAR(1). The state-space representation of (23) and

(25) becomes

Xt = ZF ∗t + γt γt∼N (0, H) ,

F ∗t+1 = T ∗F ∗t +Rξt ξt∼N (0, Q) ,
(26)

where

Xt =
(
y11t,1 y11t,2 y11t,3 x21t y12t,1 y12t,2 y12t,3 x22t

)′
,

F ∗t =
(
Fwt,1 Fwt,2 Fwt,3 f1t,1 f1t,2 f1t,3 f2t,1 f2t,2 f2t,3

)′
,

γt =
(
ε11t,1 ε11t,2 ε11t,3 η21t ε12t,1 ε12t,2 ε12t,3 η22t

)′
,

ξt =
(
εwt,1 εwt,2 εwt,3 ε1t,1 ε1t,2 ε1t,3 ε2t,1 ε2t,2 ε2t,3

)′
,

Z =

Bw1 B1 0(4×3)

Bw2 0(4×3) B2

 where Bwc =


β1cw 0 0

0 β1cw 0

0 0 β1cw

β2cw β2cw β2cw

 and Bc =


β1c 0 0

0 β1c 0

0 0 β1c

β2c β2c β2c


for c = {1, 2}. Q and H are both diagonal matrices for which entries in the main diagonal are de-

termined, respectively, by the vectors (σ2w, σ
2
w, σ

2
w, σ

2
1, σ

2
1, σ

2
1, σ

2
2, σ

2
2, σ

2
2) and (σ2ε11 , σ

2
ε11 , σ

2
ε11 , σ

2
η21 ,

σ2ε12 , σ
2
ε12 , σ

2
ε12 , σ

2
η22). Matrices T ∗ and R are derived following the line of reasoning of subsection

2.2.1 and are equal to

6This is not a restrictive assumption. However, allowing for different loading factors across the months of the

quarter will increase the number of parameters considerably.
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T ∗ =



φw1 φw2 φw3∑
i={w,1,2}

φwiφiw
∑

i={w,1,2}
φwiφi1

∑
i={w,1,2}

φwiφi2∑
j={w,1,2}

∑
i={w,1,2}

φwjφjiφiw
∑

j={w,1,2}

∑
i={w,1,2}

φwjφjiφi1
∑

j={w,1,2}

∑
i={w,1,2}

φwjφjiφi2

φ1w φ11 φ12

0(9×2)
∑

i={w,1,2}
φ1iφiw 0(9×2)

∑
i={w,1,2}

φ1iφi1 0(9×2)
∑

i={w,1,2}
φ1iφi2∑

j={w,1,2}

∑
i={w,1,2}

φ1jφjiφiw
∑

j={w,1,2}

∑
i={w,1,2}

φ1jφjiφi1
∑

j={w,1,2}

∑
i={w,1,2}

φ1jφjiφi2

φ2w φ21 φ22∑
i={w,1,2}

φ2iφiw
∑

i={w,1,2}
φ2iφi1

∑
i={w,1,2}

φ2iφi2∑
j={w,1,2}

∑
i={w,1,2}

φ2jφjiφiw
∑

j={w,1,2}

∑
i={w,1,2}

φ2jφjiφi1
∑

j={w,1,2}

∑
i={w,1,2}

φ2jφjiφi2



,

R =



1 0 0 0 0 0 0 0 0

φww 1 0 φw1 0 0 φw2 0 0∑
i={w,1,2}

φwiφiw φww 1
∑

i={w,1,2}
φwiφi1 φw1 0

∑
i={w,1,2}

φwiφi2 φw2 0

0 0 0 1 0 0 0 0 0

φ1w 0 0 φ11 1 0 φ12 0 0∑
i={w,1,2}

φ1iφiw φ1w 0
∑

i={w,1,2}
φ1iφi1 φ11 1

∑
i={w,1,2}

φ1iφi2 φ12 0

0 0 0 0 0 0 1 0 0

φ2w 0 0 φ21 0 0 φ22 1 0∑
i={w,1,2}

φ2iφiw φ2w 0
∑

i={w,1,2}
φ2iφi1 φ21 0

∑
i={w,1,2}

φ2iφi2 φ22 1



.

In Appendix A.1, the full derivation of matrices T ∗ and R is shown for the case of a VAR(1)

process when 3 monthly variables are included. It should be noted that the transition equation

of (26) corresponds to that particular case.

According to Proposition 3 in Bai and Wang (2015), three identification issues arise when

factors are not orthogonal to each other. First, in order to identify the scale of the factors, it

needs to be assumed that σ2w = σ21 = σ22 = 1 (or Q = I9). In addition, for a unique identification

Bw1 ,B1, and B2 should be lower triangular matrices with strictly positive diagonal terms, and

[Bwc ,Bc] should be full column rank matrices for c = {1, 2}. These restrictions can be achieved

by using the sign identification scheme proposed by Kose et al. (2003), Crucini et al. (2011),

and many others. This means restricting the factor loadings for the “world factor” of the

first monthly variable of the first country in the list to being strictly positive (e.g., industrial
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production index of the US), while country factors should have strictly positive factor loadings

of the first monthly variable of each country (e.g., industrial production index of each country).

3 Estimation strategy

Assume a multiple dynamic factor model with a block structure that could be written using

the state-space representation as in (26). Suppose there are C countries with nc variables per

country, while the dynamics for the (C+ 1) factors follow a VAR(1) process and the innovations

errors of the N =
∑C

c=1 nc observable variables follow an AR(1) process. Then, denoting by ϕ

the set of parameters {φww ∪ {{φwc, φcw} ∪ {φcj , φjc}Cj=1 ∪ {βicw , βic, σ2εic , φ
ic
1 }

nc
i=1}Cc=1}, there are

a total of N ×4 + (C+ 1)2 parameters7 and C+ 1 unobserved factors that need to be estimated.

For this purpose, in this section we develop a Bayesian approach. Specifically, the estimation

basically relies on a Metropolis–Hastings algorithm within a Gibbs sampling procedure where the

problem is reduced to a number of draws—accounting for the presence of missing observations—

from the posterior distribution of the parameters given the factors p(ϕ|Fw, f1, . . . , fC) and from

the posterior distribution of the factors conditional on parameters p(Fw, f1, . . . , fC |ϕ). The

algorithm basically consists of 5 blocks, briefly described below. In Appendix B, a detailed

explanation about each of the steps related to the sampling of parameters is given. Starting and

prior values are described in Appendix C.

3.1 Sampling algorithm

i. Steps 1 and 2: Drawing loading factors and innovation errors.

If we know the true factors, each of the equations described in (1) could be evaluated as

an independent regression with Gaussian autoregressive errors. If we also assume that the

autoregressive parameters in (2) are known, each equation (1) could be written as a quasi-

differentiated equation with homoscedastic and uncorrelated residuals. Then, it is possible

to post a normal-gamma prior, where the conditional posterior for βicw ,βic and σεic is also

normal-gamma.

ii. Step 3: Drawing autoregressive coefficients for observable variables.

Each of the equations described by (2) can also be drawn as an independent regression

once the idiosyncratic components, uict , and the innovation variance, σ2
εic

, are treated as if

7Including 7 countries and 4 variables per country means 176 parameters.
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they were known. Since residuals are white noise, the usual normal prior with a normal

conditional posterior can be post for the regression coefficients.8

iii. Step 4: Drawing VAR coefficients conditional on factors.

Once the world and country factors are assumed as given, and noting that the variance–

covariance matrix for factor innovations is assumed to be known and diagonal for identifi-

cation reasons, the VAR process described in equation (7) can be easily estimated. As in

the previous step, a normal prior with a normal conditional posterior can be assumed, in

this case to estimate the VAR coefficients.

iv. Step 5: Sampling latent factors given parameters.

One common strategy when latent factors of multilevel dynamic factor models need to be

estimated is to draw each latent factor conditional on the rest of the factors and parameters

(see Kose et al., 2003 and, Crucini et al., 2011, among others). However, this approach is

not suitable when factors are non-orthogonal between each other. Alternatively, the state

vector described in (26), which contains all latent factors, can be drawn conditional on

observations and parameters by means of a simulation smoother:

F ∗t|T ∼ p(F
∗
t |Xt, Z, T

∗, R,H,Q, t = 1, . . . , T ). (27)

Among others, Carter and Kohn (1994), Durbin and Koopman (2002), and Bai and Wang

(2015) propose different alternatives for the simulation-smoother algorithm. In this paper,

we follow Durbin and Koopman (2002) because the algorithm has been proven to be com-

putationally fast when T ∗ and T are large and it deals easily with missing observations,

which facilitates the empirical analysis.9

When serially correlated innovations for observable variables are assumed, the state-space

representation can be written in terms of quasi-differenced variables (using equation 32 and

equation 36) depending on quasi-differenced factors. Kim and Nelson (1999) propose a

“compact” state-space representation based on this quasi-differentiate approach (see equa-

tion 8.33′ in their book), which is adapted to deal with the stacked state-space representation

by Koopman and Pacce (2016) within a non-linear framework.

8A Metropolis–Hastings algorithm within Gibbs sampling is used in this step in order to discard explosive

roots.
9Following Durbin and Koopman (2001), pp. 92–93, a Kalman filter is applied to a modified version of

the state-space representation where, at each t, rows (or columns) of the measurement equation’s matrices that

correspond to missing observations are removed.
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4 Simulation study

In this section, we analyze the performance of the estimation method described above in the

context of mixing frequencies when different numbers of quarterly variables are included in the

model. For this purpose, we use data-generating processes (DGPs), which allow controlling the

signal-to-noise ratio and the serial correlation in both the factor dynamics and the idiosyncratic

terms. In addition, the model allows mixed frequencies for variables and non-orthogonality

across factors. 10

Assuming a total of C countries, the dynamic factor model is defined as in (7) and (6).

A VAR(2) will be assumed for the dynamics of the factors, which can be expressed in the

companion form as  Fτ

Fτ−1


︸ ︷︷ ︸
Fτ

=

Φ(1) Φ(2)

I1+C 01+C


︸ ︷︷ ︸

T∗

Fτ−1

Fτ−2


︸ ︷︷ ︸
Fτ−1

+

 ξτ

01+C


︸ ︷︷ ︸
Eτ

, (28)

where Eτ
iid∼ N (0,ΣE), and ΣE is a matrix of zeros except for the first 1 + C elements of the

main diagonal, which are equal to 1. Φ(1) and Φ(2) are defined below fulfilling the assumption

of stationarity of the factors. Variables i = 1, . . . , nc for each country c are generated as follows:

if i is monthly→ yicτ = βicwF
w
τ + βicf cτ + uicτ , τ = 1, . . . , 3T,

if i is quarterly→ xict =
3∑

h=1

βicwF
w
(t−1)3+h +

3∑
h=1

βicf cc(t−1)3+h + uict , t = 1, . . . , T,

where the loading factors are generated from a normal distribution (βicw
d
= βic ∼ N(0, 1)).

We define ρkic as the parameter that governs the signal-to-noise ratio for each variable (those

signal-to-noise ratios are drawn from a uniform distribution on [.2, .8]). ρkic restricts the variance

of the innovations errors, which for monthly and quarterly variables are assumed to follow an

AR(2) process described by

if i is monthly→ uicτ = φic1 u
ic
τ−1 + φic2 u

ic
τ−2 + εicτ , εicτ

iid∼ N (0, νmic ) ,

if i is quarterly→ uict = φic1 u
ic
t−1 + φic2 u

ic
t−2 + ηict , ηict

iid∼ N (0, νqic) ,

νkic =
1−φic2

(1+φic2 )[(1−φic2 )2−(φic1 )2]
αkic

αkic =
ρkic

1− ρkic

Σ−1Fk1,1(βicw )2 +

C∑
j=1

Σ−1Fk(j+1),(j+1)
(βij)2


 for k = {m, q},

10Our proposed DGPs basically rely on the DGPs described in Stock and Watson (2002) and Doz et al. (2012)

for the single-frequency case.
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where ΣFmh,h is the (h, h) element of the variance of Fτ .11 Similarly, ΣFqh,h is the (h, h) element

of the variance–covariance matrix of the vector of the quarterly-added factors in the companion

form:

Ft =

 Ft

Ft−1

 where Ft =

[
3∑

h=1

Fw(t−1)3+h

3∑
h=1

f1(t−1)3+h . . .
3∑

h=1

fC(t−1)3+h

]′
.

We generate two-country models by changing the number of monthly and quarterly variables

included in each country. In particular, if mc and qc are the number of monthly and quarterly

variables included for country c, then each combination of mc = {0, . . . , 5} and qc = {0, . . . , 5}—

where at least three variables are included—is simulated 100 times. It should be noted that the

number of monthly variables included (when included) is relatively small, in an attempt to create

a scenario similar to the one that will appear in the empirical approach. The sample size is equal

to T = 100 for qc (or 3T = 300 for mc), which corresponds to almost 25 years of data.12 In all

cases, the VAR(2) process assumed for the factors is given by

[
Φ(1) Φ(2)

]
=


.5 .3 0 .2 0 0

−.1 .2 .1 .1 .1 0

.2 −.2 .4 .1 −.1 .2

 ,
which is line with the dynamic of the VAR(2) process that Bai and Wang (2015) use in their

simulation study. The AR(2) process for innovations comes from setting φic1 = .4 and φic2 = .2

for all i and c.

To evaluate the performance of the Bayesian estimation of the stacked approach, we perform

two analyses. In the first analysis, we examine the performance of the model in obtaining

accurate inferences of the factors. For this purpose, we compute the adjusted R-squared of

regressing each estimated factor on the true one, which can be interpreted as a measure of

the goodness of fit. Figure 1 shows the median of the adjusted R-squared values over the 100

simulations for the common factor and for the two country-specific factors.

As expected, the factor common to all countries (Fw) is always better assessed than the

country factors (F1 and F2). This is because the number of variables affecting Fw is greater

than those affecting each country factor. The improvements in the adjusted R-squared values

are significant when the number of monthly variables increases, especially when the number of

11from the companion form vec(ΣF ) = [I[2(1+C)] − T ⊗ T ]−1vec(ΣE)
12When increasing mc or qc, the variables used in the previous step are maintained (e.g., when moving from

(mc = 3, qc = 0) to (mc = 3, qc = 1), the three monthly variables and factors are kept and just a quarterly variable

per country is added to the model.
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Figure 1: Adjusted R2 of regressing estimated on true factors

Common Factor

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

R
 s

qu
ar

ed

F1

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
 s

qu
ar

ed

F2

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
 s

qu
ar

ed

0Q 1Q 2Q 3Q 4Q 5Q

Note: Median values over 100 model simulations of each combination of {mi
c, q

j
c}. The x axes represent the

number of monthly variables included per country.

quarterly variables already included in the models is relatively small. As an example, the black

line with stars (which represents the case where only one quarterly variable is included) increases

with the number of monthly variables added (from 2 to 5 monthly variables), and this is the

case for all lines in Figure 1. This suggests exploring the mixed-frequency approach to obtain

accurate inferences for the unobserved factors.13

The second analysis is related to the precision of the estimation of the VAR coefficients’

governing factor dynamics. Figures 2 and 3 show the estimated coefficients for the two autore-

gressive matrices for each combination of mc = {0, . . . , 5} and qc = {0, . . . , 5}. Each vertical line

connects the mean of the 16% and 84% quantiles for the estimation of the VAR’s parameters

over the 100 simulations. The marker in every single line reflects the mean of the estimated

median for each case.

Some results can be extracted from a visual inspection of the figures. The first result is that

when no monthly variables are included (vertical lines that refer to 0 in the x axis), it is very hard

to obtain estimates different from zero for those VAR parameters that allow for spillover (all

parameters off the main diagonal of Φ(1) and Φ(2)). This result shouldn’t be surprising because

the model is trying to capture the monthly dynamics of the factors from quarterly information.

However, the estimation of the elements in the main diagonal (those capturing the effects of

past values of one factor on the factor itself) is relatively accurate even when no monthly series

are included. These outcomes are related to the identification issues regarding the estimation

of matrix Φ when only quarterly variables are included in the model (see footnote 4 in Section

13It should be noted that under the stacked approach, when only quarterly variables are included, a monthly

factor is still obtained and, therefore, it is possible to compute the adjusted R-squared.
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Figure 2: Factor’s VAR coefficients for Φ(1):

True values and mean of 16% and 84% estimated quantiles
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Note: Vertical lines represent the mean of the [16% − 84%] quantiles over 100 replications of the estimation of

VAR coefficients for each combination of monthly and quarterly variables included per country in the model. The

x axes represent the number of monthly variables used in the estimation of each coefficient. The true values of

coefficients are shown in titles and with the horizontal black line.

2.2), problems which do not emerge when no spillovers are allowed.

The second result is that for any given number of monthly variables, including more quarterly

variables pushes the median value of the VAR parameters to the true values. Adding monthly

variables to the estimation also has a positive effect on the estimation of VAR parameters, which

is more visible for the parameters of the Φ(1) matrix. This shows that using mixed frequencies
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Figure 3: Factor VAR coefficients for Φ(2):

True values and mean of the 16% and 84% estimated quantiles
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Note: See notes from Figure 2

helps in the estimation of factor dynamics, even when quarterly variables are used to infer the

dynamics of the monthly unobserved factors.

5 Empirical Application

The multilevel dynamic factor model is applied for the G7 economies using a dataset that spans

from January 1980 until December 2018.

The empirical application described below has some distinctive features with respect to the
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literature on multilevel dynamic factor models with a block structure (e.g., Kose et al., 2003 and

Crucini et al., 2011, among others). First, our framework allows for the possibility of analyzing

the “spillover” effects of shocks originating in any particular country. This is feasible since

unobserved factors are allowed to follow an unrestricted VAR(p) process. Second, by allowing

the factors to have a monthly dynamic (through the use of mixed frequencies), we limit the

possibility that a country innovation generated in a specific month will be confused with a world

innovation if it is the case that the country innovation spills over to other economies within a

quarter. We further exploit these features, and we analyze how innovations in the GDP growth

of one country could affect the expectations of GDP growth in other countries.

5.1 Data description

We select the relevant indicators for each country by following Stock and Watson (1989). Apart

from GDP, we include one supply-side indicator (industrial production), one demand-side indica-

tor (retail sales), one series describing the employment situation and, when available, one series

related to household income. Table 1 shows all series included per country and their respective

time spans. Since model estimation does not need a balanced data set, series are not always

for the whole period (January 1980–December 2018). All variables are seasonally adjusted and

expressed in terms of growth rate to avoid unit root problems. Data are from OECD, national

statistical offices, central banks, and Datastream.

5.2 International business cycles

The multilevel dynamic factor model described in equations (23), (25), (7), and (6) is estimated

for the G7, assuming a VAR(2) process for the dynamics of the factors and an AR(2) process

for the idiosyncratic errors uic. Sign identification relies on restricting country loading factors

associated with the industrial production (IP) of each country and the world loading factor

related with this variable (but only for the US) to being strictly positive (i.e., βIP,c > 0 for

c = 1, . . . , C and βIP,USw > 0). Scale identification comes from assuming Q = IC+1.
14

World and country factors are estimated from a Markov Chain of length 8000 (after burning

the first 2000 draws). Figure 4 shows the median of the posterior distribution of the estimated

world factor, including the 16% and 84% percent quantiles. Given the importance the US has

for the world economy, the figure also includes NBER recession dates (shaded areas). The figure

14Among others, Kose et al. (2003) and Crucini et al. (2011) use similar restrictions. In line with Bai and Wang

(2015), the VAR dynamics of the factors remain unrestricted.
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Table 1: Data series included per country

Series Range

United States (US)

Industrial Production (m) 1980:01—2018:12
Real Manufacturing and Trade Industries Sales (m) 1980:01—2018:12
All Employees: Total Nonfarm Payrolls (m) 1980:01—2018:12
Real Disposable Personal Income (m) 1980:01—2018:12
Real Gross Domestic Product (Q) 1980:Q1—2018:Q4

Japan (JAP)

Industrial Production (m) 1980:01—2018:12
Total Retail Trade (volume) (m) 1980:01—2018:12
Total Employment (m) 1980:01–2018:12
Real Net Household Disposable Income (Q) 1980:Q1–2018:Q4
Real Gross Domestic Product (Q) 1980:Q1–2018:Q4

Germany (GER)

Industrial Production (m) 1980:01–2018:12
Real Trade, except for motor vehicles and motorcycles (m) 1980:01–2018:12
Total Employment (m) 1981:01–2018:12
Real Net Household Disposable Income (Q) 1991:Q1–2018:Q4
Real Gross Domestic Product (Q) 1980:Q1–2018:Q4

United Kingdom (UK)

Industrial Production (m) 1980:01–2018:12
Total Retail Trade (volume) (m) 1980:01–2018:12
Total Employment –first period– (m) 1980:01-1991:12
Total Employment –second period– (m) 1992:01–2018:12
Real Household Disposable Income (Q) 1980:Q1–2018:Q4
Real Gross Domestic Product (Q) 1980:Q1–2018:Q4

Canada (CAN)

Industrial Production (m) 1980:01–2018:12
Total Retail Trade (volume) (m) 1980:01–2018:12
Total Employment (m) 1980:01–2018:12
Real Net Household Disposable Income (Q) 1981:Q1–2018:Q4
Real Gross Domestic Product (Q) 1980:Q1–2018:Q4

France (FRA)

Industrial Production (m) 1980:01–2018:12
Household Consumption Expenditure in Manufactured Goods (m) 1980:01–2018:12
Payroll Employment (Q) 1980:Q1–2017:Q1
Real Gross Household Disposable Income (Q) 1980:Q1–2018:Q4
Real Gross Domestic Product (Q) 1980:Q1–2018:Q4

Italy (ITA)

Industrial Production (m) 1980:01–2018:12
Total Retail Trade (volume) –first period– (m) 1990:01–2000:01
Total Retail Trade (volume) –second period– (m) 2000:02–2018:12
Total Employment –all employees excluding executives– (m) 2000:01–2018:12
Real Gross Domestic Product (Q) 1980:Q1–2018:Q4

Note: (m) indicates monthly variables, while (Q) indicates quarterly ones. Data sources are OECD, national statistics offices, Datastream,
and national central banks. All series are seasonally adjusted.
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Figure 4: World factor

Note: Posterior median and the 16% and 84% estimated quantiles. Shaded areas correspond to NBER recession

dates.

indicates that the performance of the world economy during NBER recessions has, in general,

been negative. In this sense, economic downturns such as the double dip recession of the early

1980s, the mild recession of the early 1990s, the downturn at the end of 2001 (associated with

the dot-com bubble burst), and the global financial crisis of 2008 are described by the world

factor. Most of these major world economic events were also captured in Aruoba et al. (2011),

Kose et al. (2008), Kose et al. (2012), Crucini et al. (2011), and Mumtaz et al. (2011).

Figure 5 shows the evolution of the estimated country-specific factors. Each country captures

the economic developments of its respective country. The US country factor exhibits negative

values during each of the NBER recession dates. The Japanese factor takes negative values for

a long period during the 1990s, the “lost decade”. The German factor shows the reunification

boom followed by the recession during the first years of the ‘90s. The UK factor reflects both the

early ‘80s and ‘90s recessions. Moreover, factors for European countries also reflect the economic

downturn of the “European sovereign debt crisis” in 2011–2012.

In Table 2, we examine how each factor influences national economic cycles. For this purpose,

the table reports the relative importance of each factor in the variance of GDP and industrial

production.15

The table suggests that the share of GDP variability explained by the model is relevant for

15We calculate the variance explained by each factor as if the factors were orthogonal to each other. This is

mainly due to difficulties in assigning the magnitudes attributable to the covariance between the factors when

calculating the variance share of the non-orthogonal factors. We assume the difference between the share of the

variance explained by each factor when the factors are assumed to be orthogonal and when they are assumed to

be not, as the magnitudes attributable to that covariance.
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Figure 5: Country factors

US factor JAP factor

GER factor UK factor

CAN factor FRA factor

ITA factor

Note: Posterior median and the 16% and 84% estimated quantiles. Shaded areas correspond to NBER recession

dates.

all G7 economies. The world factor explains a substantial share of the output variance (at least

16%) in 5 out of the 7 countries, although its role in explaining the business cycles of Japan and

Germany appears to be less important. In addition, the country factors explain no less than

24% of GDP volatility. Finally, although the contribution of world and country-specific factors

to the variability of industrial production is also sizable for all countries, the role of the factors

in explaining IP cycles diminishes considerably.

Although we find that GDP variance shares explained by the global factor are significant,

these shares are lower than those usually obtained in the IBC literature (see Kose et al., 2003,

Kose et al., 2008, and Crucini et al., 2011, among many others). The explanation could be that

some of the international links are captured in the dynamics of each country factor.

To examine the extent to which allowing for spillovers could explain the lesser role of the
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Table 2: Variance decomposition (spillovers are allowed)

World Country Idiosyncratic

Country Variable .16 Med .84 .16 Med .84 .16 Med .84

US GDP 13.8 18.0 22.4 43.6 49.5 55.3 29.2 32.5 35.7
IP 4.0 5.9 8.2 32.9 36.0 39.2 55.3 57.9 60.4

JAP GDP 9.2 13.4 17.9 18.5 24.0 30.4 57.2 62.2 66.6
IP 3.7 5.7 8.0 1.9 3.0 4.6 88.6 91.0 93.2

GER GDP 4.6 8.9 14.4 71.9 80.5 87.0 6.1 9.8 15.7
IP 13.0 17.0 21.2 4.2 6.2 9.2 72.1 76.4 80.2

UK GDP 16.4 21.0 26.0 41.4 50.5 60.3 20.1 28.0 35.8
IP 12.7 15.7 18.9 4.1 5.9 7.9 75.2 78.3 81.3

CAN GDP 12.3 16.5 20.8 59.5 65.4 70.9 14.6 18.1 21.8
IP 9.6 12.8 16.2 14.8 16.7 18.7 67.5 70.5 73.1

FRA GDP 15.0 22.0 30.2 54.7 65.6 73.9 8.0 11.7 19.1
IP 20.1 24.7 29.8 1.5 2.7 4.3 67.4 72.4 76.8

ITA GDP 11.2 17.0 23.6 44.8 57.3 69.0 16.3 25.2 34.9
IP 17.0 20.7 24.7 3.1 4.8 7.0 70.6 74.2 77.5

Note: Medians, 16% and 84% quantiles of posterior variance shares.

world factor, we also run the model under the assumption that factors are orthogonal. Table 3,

which reports the variance decomposition under orthogonality, evidences a significantly greater

role of the world factor, in line with the existing literature. As noticed by Stock and Watson

(2005), when all cross-dynamics are attributed to a common shock (factors are orthogonal), it

is not possible to separate effects of common shocks from those of spillovers.

5.3 Spillover effects on factor dynamics

To analyze the “spillover” effects of shocks affecting any particular country factor or the global

component, we plot in Figure 6 the IRFs of the global and each of the three major economies’

factors (US, Germany, and Japan) to shocks in the dynamics of the factors.16 The posterior

medians are used to denote the point estimates, while the lower and upper 16% quantiles are

adopted as the error bands.

Some noteworthy features emerge from the plotted IRFs. First, shocks to the world factor

play a significant role in the dynamics of most of the country factors. The US and the Euro-

area countries exhibit the largest reactions to world shocks. Second, the world factor reacts

positively to shocks to the country factors of the US, Japan, the UK, and Canada. Third, the

US is the only country that generates significantly positive spillovers in all 6 other economies,

which confirms the importance the US economic cycle has for the world economy. Fourth, shocks

16The rest of the IRFs are shown in Appendix D
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Table 3: Variance decomposition (spillovers not allowed)

World Country Idiosyncratic

Country Variable .16 Med .84 .16 Med .84 .16 Med .84

US GDP 19.1 21.8 24.6 39.2 43.7 48.0 31.2 34.5 37.7
IP 5.7 7.6 9.9 32.0 35.6 39.2 53.7 56.7 59.5

JAP GDP 21.8 24.5 27.2 11.8 15.0 19.2 56.2 60.2 63.7
IP 4.6 6.4 8.4 0.4 0.9 1.8 90.4 92.5 94.3

GER GDP 32.1 35.2 38.5 48.7 53.7 58.4 7.5 10.9 15.0
IP 15.7 18.4 21.4 1.1 2.7 5.8 74.5 78.3 81.5

UK GDP 25.9 28.9 32.0 43.7 48.7 53.2 18.8 22.4 26.4
IP 9.9 12.1 14.6 3.6 4.8 6.2 80.5 83.0 85.2

CAN GDP 17.8 20.4 23.1 57.3 61.9 66.3 14.3 17.7 21.3
IP 9.0 11.1 13.4 13.3 15.4 17.9 70.8 73.3 75.7

FRA GDP 50.4 54.5 58.5 18.6 31.4 38.6 7.5 13.3 26.6
IP 14.5 17.4 20.7 0.1 0.5 2.3 77.1 81.3 84.6

ITA GDP 46.4 50.0 53.8 0.0 0.5 2.1 44.9 48.9 52.8
IP 17.0 19.9 22.8 2.6 5.2 8.4 70.6 74.7 78.4

Note: Medians, 16% and 84% quantiles of posterior variance shares.

to the Japanese factor affect only the dynamics of continental European countries, while shocks

to the UK factor means positive spillovers for all factors except the Japanese one. In sum, the

spillover effects from each of the countries are significant sources of economic co-movements

among the G7 countries.

However, the IRFs shown in Figure 6 and 8 have two important drawbacks: (i) the IRF

refers to non-observable variables; therefore, even though it could be of interest to conceptually

describe the spillover and correlations across countries, they are useless from a policymaker

perspective (observable variables are the information available for the policymaker, and they have

to make inferences about co-movements across countries based on those observables); (ii) one

of the variables included in the VAR is the world factor, which is estimated using data from all

countries; therefore, if a change in one major economy affects other countries contemporaneously,

the model could interpret it as movements in the world factor (even though they are movements

that come from that major economy). A deeper analysis that tries to solve this problem is

presented in the following subsection.

5.4 Spillover effects on observables

The drawbacks we mentioned at the end of the previous subsection do not imply that the

underlying model cannot be used to analyze the dynamics of the observable variables. In this

section, we examine how these variables react to a surprise in the evolution of their partners’
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Figure 6: Impulse response functions

W to World World to US World to GER World to JAP

US to World US to US US to GER US to JAP

GER to World GER to US GER to GER GER to JAP

JAP to World JAP to US JAP to GER JAP to JAP

Note: Posterior median and the 16% and 84% estimated quantiles. The number of periods after a shock refers to

months.

economic variables. In particular, we analyze how national GDP releases affect the forecast of

the evolution of GDP in other countries.

For this purpose, we measure the transmission of a surprise in country j’s GDP (the difference

between the release and the forecast of the model in country j) to the conditional forecasts of

the other countries’ GDPs by comparing two different conditional forecast scenarios. In the first

scenario, we perform a four-period-ahead forecast (from T + 1 to T + 4) for each country, under

the assumption that no additional shocks hit the economies. In the second scenario, we add a

surprise of a size of 0.5 standard deviations at T + 1 to the GDP of country j. The differences

approach the revisions of GDP forecasts due to the unexpected change in the GDP of country

ECB Working Paper Series No 2484 / October 2020 29



Figure 7: One-year cumulative changes in GDP growth in response to

0.5 standard deviations of extra growth in the GDP of each country

extra GDP growth in US extra GDP growth in JAP extra GDP growth in GER

extra GDP growth in UK extra GDP growth in CAN extra GDP growth in FRA

extra GDP growth in ITA

Note: Posterior median and the 16% and 84% estimated quantiles. The y axes measure the cumulative growth

difference, in percentage points, between a base forecast scenario and a scenario where the GDP forecast of a

particular country is increased by half a standard deviation.

j.

To estimate conditional forecasts, we follow the conditional forecast algorithm proposed by

Banbura et al. (2015). In particular, the exercise is set as follows: we first estimate the one-

quarter-ahead forecast for each of the variables included in the model. These forecasts are

generated conditional on the information set IT = {yict , i = 1, . . . , N, c = 1, . . . , C, t = 1, . . . , T}

in every draw of the Gibbs sampling and by means of the Kalman filter. The median of all

draws is taken as the point forecast (ỹiT+1|IT ) and is assumed as given.

The first of the scenarios consists in computing forecasts from T + 1 to T + 4 conditional on

the estimated GDP point forecast for one of the countries (country “j”). In other words, a new
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information set given by ĨT+1 = {IT , ỹjT+1|IT } is used to conduct those conditional forecasts.

It should be noted that only ỹjT+1|IT is supposed to be known at this step and a new set of

forecasts ˜̃yi
T+1|ĨT+1

, ∀i 6= j, which can be generated at each draw of the sampling by means of

the simulation-smoother algorithm (assuming yiT+1, i 6= j are missing observations). Forecasts

for T + 2 to T + 4 are then recursively obtained using the Kalman filter. The second scenario

involves assuming a positive surprise in the one-quarter-ahead GDP point estimate forecast of

the same country j. This scenario is computed as in the first scenario, but adding half a standard

deviation to ỹjT+1|IT .

Some clarification is required regarding the forecast computations. First, the difference

between both scenarios is computed as the difference between the forecasts obtained for each

scenario at each draw of the sampler. Of course, we use the same seed to start the sampling

required to compute the forecasts from both scenarios. Second, we use the same parameter

estimates at each iteration of the sampler when generating the two paths of forecasts. Therefore,

the parameters used in each of the scenarios are those obtained and saved at each draw of the

sampler when running the model conditional only on IT (i.e., when estimating ỹjT+1|IT ). Third,

both scenarios are computed seven times, assuming a positive surprise in each of the countries’

GDP growth, one at a time.

Summarizing, the exercise is performed as follows:

i. Following the estimation strategy described in Appendix B, draw ϕ(h) conditional on IT

from each posterior distribution, and save each iteration h.

ii. Following the estimation strategy described in Subsection 3.1 (iv), draw the latent factors

conditional on ϕ(h) and IT and iterate on the Kalman filter to obtain y
ic,(h)
T+1|IT . Keep the

median of all h draws for variable j of country c (ỹjcT+1|IT ).

iii. Compute ˜̃y
ic,(h)

(T+1|ĨT+1,ϕ(h))
for all variables different from variable j of country c by means of

the simulation-smoother algorithm. Compute ˜̃y
ic,(h)

(T+k|ĨT+1,ϕ(h))
, ∀i, ∀c, k = 2, 3, 4, recursively

by means of the Kalman filter. Repeat this step but adding half a standard deviation to

ỹjT+1|IT (scenario two).

iv. Compute the difference between the two scenarios at each iteration h.

Figure 7 displays the one-year cumulative difference between the two scenarios for the GDP

growth of each of the countries. Some important results can be described. First, positive

innovations in the GDP of all G7 economies never result in a negative impact on the GDP

growth of G7 partners. This means that expectations in G7 countries are positively correlated.
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Second, the countries that generate the largest spillovers after positive surprises in the na-

tional GDP growth rates are the US and UK. Specifically, half a standard deviation of extra

GDP growth in the US and UK could result, after one year, in 0.1–0.4 percentage points of

expected extra growth in all other G7 countries. The relevance of the US economic cycle on

the rest of the world also appears in Dées and Vansteenkiste (2007) and Bayoumi and Swiston

(2009), among many others. Within a structural VAR framework, Poirson-Ward and Weber

(2011) document the importance not only of the US but also of the UK in generating spillover

effects.

The noticeable impact of the UK on the economic cycles of the other G7 countries has been

attributed to two features: (i) the high level of co-movements among the English-speaking G7

countries (examples are Duarte and Holden, 2003, Stock and Watson, 2005, and Camacho and

Perez-Quiros, 2006) and (ii) the relatively larger weight of the UK economy as compared to

other European Union economies.17

Third, we find a small impact of innovations in Germany’s GDP growth on the conditional

forecasts of the other G7 countries. Poirson-Ward and Weber (2011) also found small spillover

effects of German shocks and suggest that countries that are export-oriented generate smaller

spillovers than those that rely on domestic sources of growth. However, the conditional forecasts

of German GDP show large responses to unexpected changes in other countries’ GDP shocks,

and particularly those in the Euro area.18

Finally, the export-oriented Japanese economy has suffered from the same limitations as

Germany in generating positive spillovers. In particular, even though the effects from innovations

in Japan’s GDP are larger than those found in the case of Germany, they are at the same time

smaller than those generated in other countries.

Therefore, policymakers attempting to implement stabilization policies should closely mon-

itor unexpected changes in foreign the output growth of foreign economies.

6 Conclusions

Multilevel dynamic factor models are one of the most commonly used frameworks when studying

the evolution of international business cycles and the importance of common external shocks

for national output fluctuation. However, these models do not account for spillover channels

17At the moment of writing this article, the UK was starting negotiations to leave the Union.
18Bornhorst and Mody (2012) indicate that despite the size of the German economy, its export-oriented growth

generates high GDP volatility due to the high volatility of external demand. They argue that this growth structure

has limited Germany from generating higher growth in other countries.
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across economies. Based on the identification results of Bai and Wang (2015), we eliminate the

factor-independence assumption.

In addition, although some business cycle transmissions occur at higher-than-quarterly fre-

quencies, these models omit this information as it would require dealing with data samples at

monthly and quarterly frequencies. The model outlined in this paper also handles data at mixed

monthly and quarterly frequencies.

We verified that the proposed methodology properly captures common and country-specific

co-movements through a Monte Carlo analysis. Within this setup, we also show that the

spillovers are well addressed.

Finally, we apply the proposed methodology to examining international spillovers across the

G7 economies by analyzing the responses of national factors to shocks in foreign factors and by

quantifying the changes in national GDP expectations to unexpected positive changes in foreign

GDPs.

Our results are summarized as follows. First, we find that the common-to-all factor represents

a relevant share of the output variances. However, its size is smaller than usually found in the

literature because a sizable portion of this share is accounted for by the international spillovers.

This highlights the importance of the spillover channel as a source of economic co-movement

among the G7 economies.

Second, positive shocks to output growth in each of the G7 countries never negatively affects

other G7 economies, which agrees with a pro-cyclical channel of international transmission of

output growth expectations. In this context, the US and UK generate the largest spillovers

while the two export-oriented economies, Japan and Germany, produce the smallest spillovers.

Therefore, policymakers attempting to implement stabilization policies should closely mon-

itor unexpected changes to the output growth of foreign economies.
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A Derivation of VAR process under the stacked approach

A.1 VAR(1) process with stacked observation (3 monthly variables):

Under the classical representation, a VAR(1) process including three variables (xm1
τ , xm2

τ , and

xm3
τ ) can be written as

xm1
τ

xm2
τ

xm3
τ

 =


φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33



xm1
τ−1

xm2
τ−1

xm3
τ−1

+


εm1
τ

εm2
τ

εm3
τ

 ,

where 
εm1
τ

εm2
τ

εm3
τ

 ∼ NID



0

0

0

 ,


σ2ε1 0

0 σ2ε2 0

0 0 σ2ε2


 .

Going from the monthly observations of xm1
τ , xm2

τ , and xm3
τ to the stacked quarterly vectors xq1t ,

xq2t , and xq3t (now t is the quarterly time index), the VAR(1) process can be written for (t, 1),

(t, 2), and (t, 3) as

(t, 1) −→



xq1t,1

xq2t,1

xq3t,1

 =


φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33



xq1t−1,3

xq2t−1,3

xq3t−1,3

+


εq1t,1

εq2t,1

εq3t,1

 , (29)

(t, 2) −→



xq1t,2

xq2t,2

xq3t,2

 =


φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33



xq1t,1

xq2t,1

xq3t,1

+


εq1t,2

εq2t,2

εq3t,2

 , (30)

(t, 3) −→



xq1t,3

xq2t,3

xq3t,3

 =


φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33



xq1t,2

xq2t,2

xq3t,2

+


εq1t,3

εq2t,3

εq3t,3

 , (31)

where εq1t , εq2t , and εq3t are the stacked vectors of the innovation errors. It should be noted

that variables from both the second and the third month of the quarter, (t, 2) and (t, 3), could

be written in terms of the last month of the previous quarter, (t − 1, 3). This can be done by

substituting (xq1t,1, x
q2
t,1, x

q3
t,1)’ in equation (30) by the first equation and (xq1t,2, x

q2
t,2, x

q3
t,2)’ in equation

(31) by the second equation. After some algebra, a VAR(1) process can be written using the

stacked vectors xq1t ,xq2t , and xq3t as

Xq
t = TXq

t−1 +Rεt ,
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with matrices

Xq
t =

(
xq1t,1 xq1t,2 xq1t,3 xq2t,1 xq2t,2 xq2t,3 xq3t,1 xq3t,2 xq3t,3

)′
,

εt =
(
ε1t,1 ε1t,2 ε1t,3 ε2t,1 ε2t,2 ε2t,3 ε3t,1 ε3t,2 ε3t,3

)′
,

T =



φ11 φ12 φ13
3∑
i=1

φ1iφi1
3∑
i=1

φ1iφi2
3∑
i=1

φ1iφi3

3∑
j=1

3∑
i=1

φ1jφjiφi1
3∑
j=1

3∑
i=1

φ1jφjiφi2
3∑
j=1

3∑
i=1

φ1jφjiφi3

φ21 φ22 φ23

0(9×2)
3∑
i=1

φ2iφi1 0(9×2)
3∑
i=1

φ2iφi2 0(9×2)
3∑
i=1

φ2iφi3

3∑
j=1

3∑
i=1

φ2jφjiφi1
3∑
j=1

3∑
i=1

φ2jφjiφi2
3∑
j=1

3∑
i=1

φ2jφjiφi3

φ31 φ32 φ33
3∑
i=1

φ3iφi1
3∑
i=1

φ3iφi2
3∑
i=1

φ3iφi3

3∑
j=1

3∑
i=1

φ3jφjiφi1
3∑
j=1

3∑
i=1

φ3jφjiφi2
3∑
j=1

3∑
i=1

φ3jφjiφi3



,

R =



1 0 0 0 0 0 0 0 0

φ11 1 0 φ12 0 0 φ13 0 0
3∑
i=1

φ1iφi1 φ11 1
3∑
i=1

φ1iφi2 φ12 0
3∑
i=1

φ1iφi3 φ13 0

0 0 0 1 0 0 0 0 0

φ21 0 0 φ22 1 0 φ23 0 0
3∑
i=1

φ2iφi1 φ21 0
3∑
i=1

φ2iφi2 φ22 1
3∑
i=1

φ2iφi3 φ23 0

0 0 0 0 0 0 1 0 0

φ31 0 0 φ32 0 0 φ33 1 0
3∑
i=1

φ3iφi1 φ31 0
3∑
i=1

φ3iφi2 φ32 0
3∑
i=1

φ3iφi3 φ33 1



.

A.2 VAR(2) process with stacked observation (3 monthly variables):

Under the classical representation, a VAR(1) process including three variables (xm1
τ , xm2

τ , and

xm3
τ ) can be written as
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
xm1
τ

xm2
τ

xm3
τ

 =


φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33



xm1
τ−1

xm2
τ−1

xm3
τ−1

+


ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33



xm1
τ−2

xm2
τ−2

xm3
τ−2

+


εm1
τ

εm2
τ

εm3
τ

 ,

where 
εm1
τ

εm2
τ

εm3
τ

 ∼ NID



0

0

0

 ,


σ2ε1 0

0 σ2ε2 0

0 0 σ2ε2


 .

Using the same reasoning developed in Appendix A.1 and after some algebra, a VAR(2) process

can be written using the stacked vectors xq1t ,xq2t , and xq3t as

Xq
t = TXq

t−1 +Rεt ,

with matrices

Xq
t =

(
xq1t,1 xq1t,2 xq1t,3 xq2t,1 xq2t,2 xq2t,3 xq3t,1 xq3t,2 xq3t,3

)′
,

εt =
(
ε1t,1 ε1t,2 ε1t,3 ε2t,1 ε2t,2 ε2t,3 ε3t,1 ε3t,2 ε3t,3

)′
,

T =
(

0(9×1) T1 0(9×1) T2 0(9×1) T3

)
,

T1 =



ψ11 φ11
3∑
i=1

φ1iψi1
3∑
i=1

φ1iφi1 + ψ11

3∑
j=1

3∑
i=1

φ1jφjiψi1 +
3∑
i=1

ψ1iψi1
3∑
j=1

3∑
i=1

φ1jφjiφi1 +
3∑
i=1

φ1iψi1 +
3∑
i=1

φi1ψ1i

ψ21 φ21
3∑
i=1

φ2iψi1
3∑
i=1

φ2iφi1 + ψ21

3∑
j=1

3∑
i=1

φ2jφjiψi1 +
3∑
i=1

ψ2iψi1
3∑
j=1

3∑
i=1

φ2jφjiφi1 +
3∑
i=1

φ2iψi1 +
3∑
i=1

φi1ψ2i

ψ31 φ31
3∑
i=1

φ3iψi1
3∑
i=1

φ3iφi1 + ψ31

3∑
j=1

3∑
i=1

φ3jφjiψi1 +
3∑
i=1

ψ3iψi1
3∑
j=1

3∑
i=1

φ3jφjiφi1 +
3∑
i=1

φ3iψi1 +
3∑
i=1

φi1ψ3i



,
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T2 =



ψ12 φ12
3∑
i=1

φ1iψi2
3∑
i=1

φ1iφi2 + ψ12

3∑
j=1

3∑
i=1

φ1jφjiψi2 +
3∑
i=1

ψ1iψi2
3∑
j=1

3∑
i=1

φ1jφjiφi2 +
3∑
i=1

φ1iψi2 +
3∑
i=1

φi2ψ1i

ψ22 φ22
3∑
i=1

φ2iψi2
3∑
i=1

φ2iφi2 + ψ22

3∑
j=1

3∑
i=1

φ2jφjiψi2 +
3∑
i=1

ψ2iψi2
3∑
j=1

3∑
i=1

φ2jφjiφi2 +
3∑
i=1

φ2iψi2 +
3∑
i=1

φi2ψ2i

ψ32 φ32
3∑
i=1

φ3iψi2
3∑
i=1

φ3iφi2 + ψ32

3∑
j=1

3∑
i=1

φ3jφjiψi2 +
3∑
i=1

ψ3iψi2
3∑
j=1

3∑
i=1

φ3jφjiφi2 +
3∑
i=1

φ3iψi2 +
3∑
i=1

φi2ψ3i



,

T3 =



ψ13 φ13
3∑
i=1

φ1iψi3
3∑
i=1

φ1iφi3 + ψ13

3∑
j=1

3∑
i=1

φ1jφjiψi3 +
3∑
i=1

ψ1iψi3
3∑
j=1

3∑
i=1

φ1jφjiφi3 +
3∑
i=1

φ1iψi3 +
3∑
i=1

φi3ψ1i

ψ23 φ23
3∑
i=1

φ2iψi3
3∑
i=1

φ2iφi3 + ψ23

3∑
j=1

3∑
i=1

φ2jφjiψi3 +
3∑
i=1

ψ2iψi3
3∑
j=1

3∑
i=1

φ2jφjiφi3 +
3∑
i=1

φ2iψi3 +
3∑
i=1

φi3ψ2i

ψ33 φ33
3∑
i=1

φ3iψi3
3∑
i=1

φ3iφi3 + ψ33

3∑
j=1

3∑
i=1

φ3jφjiψi3 +
3∑
i=1

ψ3iψi3
3∑
j=1

3∑
i=1

φ3jφjiφi3 +
3∑
i=1

φ3iψi3 +
3∑
i=1

φi3ψ3i



,
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R =



1 0 0 0 0 0 0 0 0

φ11 1 0 φ12 0 0 φ13 0 0
3∑
i=1

φ1iφi1 + ψ11 φ11 1
3∑
i=1

φ1iφi2 + ψ12 φ12 0
3∑
i=1

φ1iφi3 + ψ13 φ13 0

0 0 0 1 0 0 0 0 0

φ21 0 0 φ22 1 0 φ23 0 0
3∑
i=1

φ2iφi1 + ψ21 φ21 0
3∑
i=1

φ2iφi2 + ψ22 φ22 1
3∑
i=1

φ2iφi3 + ψ23 φ23 0

0 0 0 0 0 0 1 0 0

φ31 0 0 φ32 0 0 φ33 1 0
3∑
i=1

φ3iφi1 + ψ31 φ31 0
3∑
i=1

φ3iφi2 + ψ32 φ32 0
3∑
i=1

φ3iφi3 + ψ33 φ33 1



.

B Sampling parameters given the factors

B.1 Loading factors

The dynamics of monthly variables are given by (1) and (2). As noted in Kose et al. (2003), if

we know the true factors, each monthly variable equation can be evaluated as an independent

regression with Gaussian autoregressive errors. Thus, one possibility would simply be to estimate

the factor loadings as if the latent factors and the remaining parameters were known. Relying

on Chib and Greenberg’s (1994) Bayesian procedure, which deals with AR(p) errors, we start

by pre-multiplying both sides of equation (1) by (1−Φic(L)), where Φic(L) = φic1 L− . . .−φicpiL
pi

and L is a lag operator, in order to write the following quasi-differentiated equation:

ỹicτ =
(
βicw βic

)
F̃icτ + εicτ ,

where the autoregressive part of the residuals disappears and

ỹicτ = (1− φic1 L− . . .− φicpiL
pi)yicτ , (32)

F̃icτ = (1− φic1 L− . . .− φicpiL
pi)
[
Fwτ f cτ

]′
.

Note that F̃icτ need the superscript i since autoregressive coefficients depend on each of the

variables. Under this setting, it is possible to choose for the loading bic =
[
βicw βic

]′
the usual

normal density priors p(bic) ∼ N
(
bic, Bic

)
, resulting in the following conditional posterior,

which is also normal:

p(bic|Fw, f c, ϕ−bic) ∼ N
(
bic, Bic

)
,
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where

Bic = Bic
−1

+ σ−2
εic

3T∑
τ=1

F̃ic ′τ F̃icτ , (33)

bic = Bic−1
(
Bic

−1
bic + σ−2

εic

3T∑
τ=1

F̃ic ′τ ỹicτ

)
. (34)

The case of quarterly variables is slightly harder to deal with since it is equation (25) that

needs to be quasi-differentiated. It should be noted that now variables are expressed using the

stacked representation for factors with time index t. After pre-multiplying both sides of (25) by

(1− Φic
p (L)), it is possible to write

x̃ict =
(
βicw βic

)
F̃ict + ηict , (35)

where the autoregressive part of the residuals disappears and

x̃ict = (1− φic1 L− . . .− φicpiL
pi)xict , (36)

F̃ict =

[
3∑
j=1

F̃ iwct,j

3∑
j=1

f̃ ict,j

]′
,

F̃ iwct,j = (1− φic1 L− . . .− φicpiL
pi)Fwt,j

f̃ ict,j = (1− φic1 L− . . .− φicpiL
pi)f ct,j

 for j = 1, 2, 3.

Note that the lag operator acts over the time index t (i.e., LXt,j = Xt−1,j). The same kinds

of priors as the ones used for the loading factors of monthly variables can be adopted just

substituting the quasi-differentiated variables (F̃icτ , ỹ
ic
τ ) by (F̃ict , x̃ict ) in (33) and (34).19

B.2 Autoregressive coefficients and innovation variances for observables

Drawing the autoregressive coefficients for the idiosyncratic components described in equation

(2), Φic =
(
φic1 . . . φicpi

)′
, does not involve any particular problem once the idiosyncratic part

(uict ) and the innovation variance σ2
εic

are treated as if they were known.20 Again, following

Chib and Greenberg (1994), it is possible to posit the usual conjugate prior density p(Φic) ∼

N
(

Φ
ic
, V

ic−1
)
Isφ, where Isφ is an indicator function for stationarity, and sample from the

posterior distribution of Φic using a Metropolis–Hastings algorithm.

Conditional on the AR coefficients, the factor loadings, and the latent factors, the estimation

of the innovation variances, (σ2
εic

and σ2
ηic

), is straightforward. Setting the following inverse

19Note the summation in both (33) and (34) is now from t to T
20Otrok and Whiteman (1998) give an excellent and detailed explanation for the AR and the innovation vari-

ances parameter sampling.

ECB Working Paper Series No 2484 / October 2020 42



gamma density prior,

p(σ2εic)
d
= p(σ2ηic) ∼ IG

(
v

2
,
δ

2

)
,

the conditional posterior distributions are

p
(
σ2εic |F

w, f c, ϕ−σ2
εic

)
∼ IG

(
v + 3T

2
,
δ + ε̆ic

2

)
,

p
(
σ2ηic |F

w, f c, ϕ−σ2
εic

)
∼ IG

(
v + T

2
,
δ + η̆ic

2

)
,

where

ε̆ic =
3T∑
τ=1

(
ỹicτ −

(
βicw βic

)
F̃icτ

)2
,

η̆ic =
T∑
t=1

(
x̃ict −

(
βicw βic

)
F̃ct
)2
.

B.3 VAR coefficients conditional on factors

Once the world and country factors are assumed as given, the estimation of the VAR process

that describes the dynamics of those factors is straightforward. Taking advantage of Bai and

Wang’s (2015) matrices notation, a VAR(p) generalization of equation (7) can be written as21

G = HA+ ξ or vec(G) =
(
I(1+C) ⊗H

)
α+ vec(ξ),

where vec(ξ) ∼ N(0, Q⊗ I(3T−p)) and

G =


F′(p+1)

...

F′3T

 , H =


F′p . . . F′1
...

. . .
...

F′(3T−1) . . . F′(3T−p)

 ,

A =


Φ(1)′

...

Φ(p)′

 , ξ =


ξ′p+1

...

ξ′3T

 , α = vec(A). (37)

Fτ , Φ(k), and ξτ were already defined in equation (7). As was mentioned, for identification

reasons, the variance–covariance matrix for factor innovations is assumed to be known and

diagonal (Q = IC+1). Therefore, it is feasible to set a normal density prior, p(α) ∼ N
(
α,Λ

−1
)

,

with a normal conditional posterior, as

p(α|Q,G) ∼ N
(
α,Λ−1

)
Isα,

21Note that in order to study the dynamics of the factors, we don’t need the stacked representation as it is

possible to work using a monthly time frequency.
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where Isα is an indicator function for stationarity and

Λ = Λ
−1

+Q−1 ⊗ (H ′H),

α = Λ−1
(

Λ
−1
α+ (Q−1 ⊗H)vec(G)

)
.

C Starting and prior values

We follow Crucini et al. (2011) and set priors for all factor loading coefficients as N(0, 10), while

the autoregressive polynomial parameter’s prior isN(0,Σi), where Σi = diag((.5)0, (.5)1, . . . , (.5)(pi−1)).

As explained in Kose et al. (2003), this kind of prior embodies the notion of no serial correlation

in the growth rates. The prior of the variances is quite diffuse, being IG(6, 0.001). Regarding

the prior for the VAR coefficients, we use a variation of a Minnesota prior (Litterman, 1979),

centered on the assumption that each factor follows an independent stationary process.22

Naming each value of the column vector α (described in 37) as α
(k)
ij , where the subscript and

the superscript correspond to those of φij(k) (k = 1, . . . , p), the VAR coefficients are assumed to

have the following prior moments:

α
(k)
ij =


0.4 i = j, k = 1 (first own lag,)

0.2 i = j, k = 2 (second own lag,)

0 otherwise,

(38)

while Λ is diagonal and the σ
(k)
ij element corresponding to α

(k)
ij has the form

σ
(k)
ij =


λ0
k

if i = j,∀k,

λ0λ1
k

(
σεj
σεi

)2

if i 6= j,∀k,
(39)

where λ0 = λ1 = 0.15. It should also be noted that
(
σεj
σεi

)2
= 1 given that Q = I(C+1).

Stating values for factors come from an N(0, 1) distribution. Using those factor values, load-

ing factors and variance starting values result from computing the OLS regression of equations

(23) and (25), depending on whether the variable is quarterly or monthly. For the VAR process,

values for the main diagonal of Φ(1) and Φ(2) are set, respectively, at 0.4 and 0.2, while all

off-diagonal values and autoregressive parameters for innovation errors are set to zero.

22As indicated in Karlsson et al. (2013), the Minnesota prior uses independent normal distribution for each

regression coefficient on the lags, which is appropriate when Q is diagonal. The author also remarks that for

computational reasons, this kind of prior takes the error variance to be known (although data-based), which is a

valid assumption in our case, given the identification scheme (Q = IC+1)
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D Impulse response functions
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