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Abstract

We study identification in Bayesian proxy VARs for instruments that con-

sist of sparse qualitative observations indicating the signs of shocks in specific

periods. We propose the Fisher discriminant regression and a non-parametric

sign concordance criterion as two alternative methods for achieving correct in-

ference in this case. The former represents a minor deviation from a standard

proxy VAR, whereas the non-parametric approach builds on set identification.

Our application to U.S. macroprudential policies finds persistent declines in

credit volumes and house prices together with moderate declines in GDP and

inflation and a widening of corporate bond spreads after a tightening of capital

requirements or mortgage underwriting standards.

JEL classification: C32, E44, G38.

Keywords: Bayesian Proxy VAR, Discriminant Analysis, Sign Concordance,

Capital Requirements, Mortgage Underwriting Standards.
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Non-technical summary

Since the 2008 Global Financial Crisis policy-makers have developed new macropru-

dential regulatory policies, targeted at dampening cyclical fluctuations in credit and

house prices. Studies assessing the effectiveness of the related policy instruments must

rely on historical, qualitative data about the timing and direction of related supervi-

sory interventions. Typically, these data are included as regressors in cross-country

panel regressions to assess the effects of interventions on credit volumes and house

prices. Studies thereby remain silent on issues such as transmission lags of policy

interventions and their cost in terms of GDP and inflation.

In this paper, we explore the dynamic effects of macroprudential policy interventions

from proxy vector autoregressions (VARs). Proxy VARs model the joint dynamics of

the series of interest and identify the dynamic effects of policy interventions from using

a respective indicator as an instrument. We provide a methodological contribution

by adapting the proxy VAR approach to the case of sparse qualitative indicators,

as faced with macroprudential policies, based on linear discriminant analysis and on

the sign concordance of shocks with the indicators. A simulation study shows that

the combination of the two criteria provides more accurate confidence bounds than

existing versions of the proxy VAR approach and is more robust to observation errors.

We then study the effects of U.S. policy interventions related to capital requirements

and mortgage underwriting standards over the period of 1956 to 2016. We find highly

persistent effects of both types of policy interventions on credit volumes and less

persistent and more moderate effects on GDP, inflation, and corporate bond spreads.

Shocks to capital requirements impact on credit to non-financial corporations, while

household credit and house prices remain unaffected, reflecting a shift towards lower

risk weights in bank credit portfolios. By contrast, mortgage underwriting standards

affect both types of credit and have a pronounced impact on house prices.

These results point to long lags in the transmission of macroprudential policies indi-

cating a need for rule-based forward-looking policies. They also suggest that static

panel regressions may underestimate the effects of macroprudential policies.
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1 Introduction

Proxy variables and narrative data have been widely used in recent years for iden-

tifying policy innovations in vector autoregressive models (VARs). The common

principle is to employ them as external information when extracting the innovations

from the VAR forecast errors. Optimally, a quantitative proxy variable for the inno-

vation is at hand. For instance, studies have identified monetary policy shocks from

high-frequency financial market data indicating the news content of monetary policy

communication (Gertler and Karadi, 2015). In other policy areas instruments yet

often relate only to a small number of events or are of a qualitative nature. These

limitations have been taken up by a narrative approach arguing that qualitative infor-

mation on just a few events achieves robust identification. For U.S. monetary policy,

Antolin-Diaz and Rubio-Ramirez (2018) show that restrictions on the sign and size

of a single event in October 1979 add important information to identifying policy

innovations in combination with sign restrictions on impulse responses.1

In this paper, we study the intermediate case of a sparse binary instrument with a

possibly larger number of events. We aim to adapt existing Bayesian methods to this

case and thereby to bridge the gap between proxy and narrative Bayesian VARs. Fol-

lowing Antolin-Diaz and Rubio-Ramirez (2018), we assume that the econometrician

knows no more than the signs of innovations for a limited number of events. However,

we also allow for errors in the econometrician’s beliefs, a likely incident unless the

number of events is very small. We therefore impose sign restrictions on the expected

values of those innovations. We explore two estimation methods that provide correct

inference for this type of restriction. First, we show that the Bayesian proxy VAR

can be adapted to a binary instrument by using a discriminant (DC) regression at

the identification step. Second, we augment the narrative sign restrictions of Antolin-

Diaz and Rubio-Ramirez (2018) with a prior on the degree of sign concordance (SC)

to cope with imperfect sign concordance between innovations and the instrument.2

1See also Caldara and Herbst (2019) and Jarocinski and Karadi (2019) for monetary policy and
Mertens and Ravn (2013) and Mertens and Montiel Olea (2018) for fiscal policy applications of
proxy VARs. Ludvigson, Ma, and Ng (2017) and Ben Zeev (2018) present other applications of the
narrative approach.

2As discussed in section 2, estimation amounts to a purely binary classification problem. We
therefore denote the instrument as binary, although it may take values of 0, +1, and -1.
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These extensions may be useful in Bayesian applications where policy interventions

are infrequent and difficult to quantify, as is the case with various types of regula-

tory, fiscal, and structural policies. While binary instruments may appear less than

ideal, our Monte Carlo simulations show that actual efficiency losses are small when

moving from quantitative to binary information. We also find that estimates from a

standard Bayesian proxy VAR are similar to those from the DC regression, as the

latter represents a minor modification of the standard approach. Hence, the standard

approach appears to work fairly well in practice. The SC prior is less efficient than

the DC regression in case of errors in the instrument but useful as a reliability prior

in combination with the latter. Among frequentist methods, our Monte Carlo sim-

ulations find that available bootstrap methods for proxy VARs tend to overestimate

uncertainty bands in the case of sparse binary instruments, whereas local projections,

which use the instrument as a regressor, are rather inefficient.

In our empirical application, we study the effects of macroprudential policies in the

post-war U.S. A large part of the macro-econometric literature on macroprudential

policies relies on binary narrative indicators, as the high diversity of policy interven-

tions impedes the construction of quantitative measures. Due to these limitations,

studies typically focus on estimating the short-run responses of credit volumes and

house prices from panel regressions (see Galati and Moessner, 2017). Our results

add to a sporadic literature on the broader macroeconomic dynamics triggered by

policy interventions. Building on a narrative dataset of Elliot, Feldberg, and Lehn-

ert (2013), we focus on capital requirements and mortgage underwriting standards.

For both types of policies, we find large and highly persistent declines in credit vol-

umes and house prices after tightening measures, together with moderate declines in

GDP and inflation and a temporary widening of corporate bond spreads. The long

transmission lags suggest that panel regressions focusing on the short run may under-

estimate the total effects of these policies. Our findings also relate to the literature

on credit supply shocks (Gilchrist and Zakrajsek, 2012) and government mortgage

purchases (Fieldhouse, Mertens, and Ravn, 2018), and underpin the role of collateral

constraints in generating the highly persistent leverage cycles found by Claessens,

Kose, and Terrones (2012) and Rünstler and Vlekke (2018).
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The remainder of the paper is organised as follows. Section 2 introduces our two iden-

tification schemes for binary instruments. Sections 3 and 4 present the Monte Carlo

simulation exercise and the application to U.S. macroprudential policies, respectively.

Section 5 concludes.

2 A Bayesian VAR for Sparse Binary Instruments

Consider the reduced-form VAR for n× 1 vector xt over periods t = 1, . . . , T ,

xt = c+
r∑
s=1

Bsxt−s + ut, (1)

where c is a constant term, and the VAR residuals ut are independently distributed

over time. The key assumption of the model is that residuals ut have a structural

representation that isolates a certain scalar innovation θt of interest as the first element

of a vector of mutually independent innovations such that

A0ut =

(
θt
εt

)
(2)

Denote with αT the first row of matrix A0, implying αTut = θt. Once α is known, the

dynamic response of xt to innovation θt can be obtained. Proxy and narrative VARs

aim at identifying α from outside information about realisations of θt. This infor-

mation may take different forms requiring different statistical methods for estimating

α. Proxy VARs, as introduced by Mertens and Ravn (2013), rely on a quantita-

tive instrument for innovations θt, whereas narrative sign restrictions, as proposed

by Antolin-Diaz and Rubio-Ramirez (2018), impose restrictions on the sign of θt for

specific events.

In this paper, we consider a weaker version of narrative sign restrictions. Instead of

imposing them directly on innovations θt, we apply them to the expected values of

the latter. We thus assume that the econometrician knows about the presence of a

mean shift in innovations θt for a set of m < T specific events but is ignorant about
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its size. This assumption defines an instrument zt that takes values of zt = sign(E θt)
for events and zt = 0 otherwise. We impose the moment conditions

E(θt|zt) = γzt

E(εt|zt) = 0.
(3)

The conditions imply a shift of size γ in the expected value E(θt|zt) for observations

with a non-zero value of zt, whereas the remaining innovations εt are required to

be independent of zt. As a result, instrument zt acts just like a treatment effect,

identifying vector α from infrequent mean shifts in the conditional distribution of θt.

Conditions (3) are a straightforward adaptation of the proxy VAR moment conditions

of Stock and Watson (2018) to the case of a sparse binary instrument (see section 2.4).3

At the same time, they may be seen as a weak version of the narrative sign restrictions

proposed by Antolin-Diaz and Rubio-Ramirez (2018), applied to the expected value

of innovations. For an individual event, the sign restriction would therefore hold with

a certain probability, depending on distributional assumptions and the value of γ.

Stock and Watson (2018) discuss the requirements for the identifiability of α in the

general context of proxy VARs. First, the relevance condition γ > 0 ensures that

instrument zt picks up events that generate relevant innovations. Second, the exo-

geneity condition E(εt|zt) = 0 requires that events included in zt are independent of

other contemporaneous shocks to the system. Third, while the exogeneity condition

is considerably weaker than the requirement of lag exogeneity in regression-based

approaches, the latter is replaced by an invertibility condition requiring that innova-

tions θt are fully spanned by the VAR residuals, such that matrix A0 is invertible. In

practice, the validity of the invertibility condition is determined by the selection of

variables xt included in the VAR (Mertens and Montiel Olea, 2018).

The purpose of this section is to present two estimation methods that achieve correct

Bayesian inference with a sparse binary instrument. As we will discuss in section 2.4,

the infrequent shifts in the conditional mean of θt generate non-standard elements

3We differ from Stock and Watson (2018) and the previous proxy VAR literature by specifying
conditions (3) in terms of conditional expectations rather than in terms of covariances. Annex B.2
shows that the two specifications are equivalent in the case of a binary instrument.
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in either the conditional or the unconditional distribution of the VAR residuals and

thereby violate the assumptions underlying the standard proxy VAR. Frequentist

proxy VARs cope with such a feature by using bootstrap methods for inference.

However, a Bayesian approach requires more fundamental adaptations. In particular,

estimation of α requires classification methods that exploit the infrequent mean shifts.

Section 2.1 presents a discriminant (DC) regression, which is based on the assumption

that the VAR residuals are normally distributed conditional on instrument zt. Sec-

tion 2.2 augments the narrative sign restrictions of Antolin-Diaz and Rubio-Ramirez

(2018) with a prior on the degree of sign concordance (SC) to adapt the restrictions

to conditions (3). The SC prior does not require specific distributional assumptions.

Section 2.3 presents a Gibbs sampler to estimate the VAR. Section 2.4 compares

these two methods with the standard approach. We denote the information set with

X = (xt)
T
t=1 and Z = (zt)

T
t=1 and set B+ = (c, B1, . . . , Bp).

2.1 Fisher Discriminant Regression

One way to estimate α is the discriminant (DC) regression due to Fisher (1931), which

is reviewed in Maddala (2013:18ff). The DC regression is designed to predict binary

observations zt from a set of explanatory variables, which are normally distributed

conditional on zt. We therefore combine equations (1) and (2) with the assumption

that the structural innovations are normally distributed conditional on zt with n× n
identity covariance matrix In,

(
θt
εt

)
|zt ∼ N

((
γzt
0

)
, In

)
. (4)

Note that assumption (4) implies a non-standard unconditional distribution of the

VAR residuals ut, which emerges as a mixture of normal distributions with different

means. We will address the implications of this feature for estimating the reduced

form VAR in section 2.3. Here, we focus on estimating parameter vector α given the

VAR residuals ut.
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Since the cases of zt = +1 and zt = −1 are symmetric, our classification problem

can be transformed into a purely binary one by abstracting from the sign of zt. Let

δt = −1 if zt = −1 and δt = 1 otherwise and define z∗t = δtzt and u∗t = δtut. Hence,

z∗t takes the values z∗t = 1 for zt 6= 0 and z∗t = 0 otherwise. This implies

u∗t ∼ N(µ∗,Σ) for z∗t = 1

u∗t ∼ N( 0 ,Σ) for z∗t = 0
(5)

Under equations (5), the DC regression

z∗t = a0 + aTu∗t + ξt (6)

provides an efficient estimate of α to predict z∗t from u∗t based on the rule ẑ∗t = 1

if αTu∗t > m/T and ẑ∗t = 0 otherwise. Despite the non-standard distribution of ξt,

the OLS estimate of a is subject to standard inference as the regression compares

the means of two conditional normal distributions, maximising the squared mean

difference between the two groups over the variance within groups (see Maddala,

2013:18ff). Assuming an uninformative prior for a and a Jeffrey prior for σ2
ξ gives

a|B+, σ
2
ξ , X, Z ∼ N(â, σ2

ξS
−1
u ) and σ2

ξ |B+, X, Z ∼ IG(σ̂ξ, T − n− 1), where â and σ̂2
ξ

are the OLS estimates of equation (6) and Su = ΣT
t=1utu

T
t . Note that a determines α

only up to scale. The rescaling step will be described in section 2.3.

The DC regression is a special case of discriminant analysis and a workhorse clas-

sification method for binary dependent variables. It is an efficient solution to our

classification problem under an intuitive loss function. Specifically, under assump-

tions (4), the above classification rule implied by the DC regression minimizes the

loss function mC1 = (T −m)C0, where Ci is the cost of misclassifying an observation

with z∗t = i. Hence, the cost of misclassification is inversely proportional to the num-

ber of observations in each category, imposing a high cost of misclassifying non-zero

zt under small m, which we regard as a desired feature.4

4Discriminant analysis refers to a general theory of classifying categorial observations from quan-
titative variables based on certain loss functions, see Annex B.1 for a brief review.
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2.2 Sign Concordance Prior

A useful statistic for the relevance of instrument zt is the sign concordance (SC)

criterion ϕ, defined as the share of instances for which the signs of innovations θt

coincide with zt,

ϕ(B+, α,X, Z) = m−1
∑
zt 6=0

I(θtzt > 0), (7)

where I() denotes the indicator function. Given the independence of θt over time, the

number of correct signs follows a binomial distribution,

p(mϕ|α, λ,B+, X, Z) = fz(mϕ;m,λ), (8)

where λ is the unknown probability of the correct classification of a single event.

Figure 1: Beta-Binomial Priors for Sign Concordance
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The graphs show densities f(ϕ;m,Λ, p, q) of beta-binomial distributions with

the number of events set to m = 10 and m = 50. The beta distribution is

defined over support [Λ, 1] with parameters p and q.

In combination with an appropriate prior on λ that supports the acceptance of high

values of ϕ, the SC statistics can be used as a non-parametric alternative to the

DC regression for estimating α based on set identification. The principle is to obtain

uninformative draws of α and to accept them with a certain probability depending on
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the value of ϕ. Clearly, the prior for λ should be chosen such that these probabilities

increase with ϕ. A suitable option is a beta-distribution λ ∼ β(p, 1) over support [Λ, 1]

with Λ > 0.5. Figure 1 shows examples of the resulting beta-binomial prior density

f(ϕ;m,Λ, p, q) for ϕ, which defines the acceptance probabilities. The benchmark

case of a uniform distribution, p = q = 1, creates acceptance weights with a smooth

threshold at Λ. For values of p > 1 the prior becomes tighter.

One may generate more complex priors that allow the probability of correct classifi-

cation λ to differ across individual events from a Poisson binomial distribution. The

computational complexity of obtaining the density of this distribution increases yet

rapidly with m. Efficient methods are provided by Chen and Liu (1997).

2.3 Sampling

The distributional assumptions (4) underlying theDC regression imply a non-standard

unconditional distribution of the VAR residuals ut in equation (1). Normality can yet

be established conditional on mean shift γ by adding the impact of γ on the residuals

as a deterministic term to the VAR. This allows for estimating the model via a Gibbs

sampler that iterates between the reduced form VAR and the DC regression. We set

a standard Normal-Wishart prior for parameters B+ and Σ and uninformative priors

for α and γ. Sampling proceeds as follows:

(1) Given B+ draw from the conditional posterior a|B+, X, Z as described in section

2.1. Construct matrix A0 such that A0A
T
0 = Σ and the first row of A0 contains

αT . This can be achieved from a Gram-Schmidt orthogonalisation as in Arias

et al. (2018). Let AT0 = A∗Q, where A∗ is the Choleski decomposition of Σ and

Q = (q1, . . . , qn) is orthogonal, QQT = In. The first column q1 of Q is found as

q1 = A−1∗ a/||A−1∗ a||. The remaining columns q2, . . . , qn are constructed without

further restrictions.

(2) Draw from the posteriors of γ|B+, α, σ
2
γ ∼ N(γ̂,m−1σ2

γ) and σ2
γ|B+, α ∼ IG(σ̂2

γ,m−
1), where γ̂ = m−1

∑T
t=1 θtzt is the sample mean of sign-adjusted innovations

θtzt and σ̂2
γ is the corresponding sample variance. Obtain the impact of mean
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shift γ on the VAR residuals as

Γzt = A−10

(
γ
0

)
zt.

(3) Define xZ,t = xt−Γzt and draw from the posterior of B+,Σ|α, γ,X, Z based on

the regression

xZ,t = c+
r∑
s=1

Bsxt−s + uZ,t, uZ,t ∼ N(0,Σ)

Obtain the residuals ut = uZ,t + Γzt of the original VAR (1).

In case of SC prior we follow Antolin-Diaz and Rubio-Ramirez (2018) in drawing

from the posterior of a by rejection sampling. Step (1) from above is replaced as

follows.

(1’) Obtain an uninformative draw of α. Following Arias et al. (2018) we specify α =

A∗q1, where q1 is a draw from the Haar measure of orthogonal matrices. This is

obtained as q1 = v/||v|| from a random draw of vector v ∼ N(0, In). Construct

the remaining columns q2, . . . , qn from a Gram-Schmidt orthogonalisation as in

Arias et al. (2018).5

(1”) Draw from the prior of λ and accept the draw with probability fz(mϕ;m,λ).

Since the SC prior does not require specific distributional assumptions, it may be used

with either assumption (4) or with an unconditional normal distribution of residuals,

ut ∼ N(0,Σ). In the latter case, mean adjustment Γzt is ignored and the Gibbs

sampler collapses to direct sampling of B+,Σ|X. Finally, the DC regression may be

combined with the SC prior by drawing α from the former and adding the rejection

sampling step (1”) after step (1).

5The Haar measure has been subject to controversy. Giacomini et al. (2021) propose robust
priors as an alternative. Inoue and Kilian (2020) yet argue that concerns about the Haar measure
have been overstated.
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2.4 Comparison with Existing Approaches

We regard the DC regression as an adaption of a standard proxy VAR to the case

of a sparse binary instrument. Proxy VARs are defined as in equations (1) and

(2) with standard distributional assumptions on the VAR residuals. They achieve

identification from the orthogonality conditions Eεtzt = 0 together with the relevance

condition Eθtzt > 0. An estimate of α is obtained from the proxy regression zt =

aTut + ξt. From rewriting the DC regression (6) as

zt = a0δt + aTut + δtξt

it is apparent that DC and proxy regressions algebraically differ only by the deter-

ministic term a0δt, which corrects for the mean shifts in conditional distributions.6

The key difference between the two regressions is the distributional assumptions on

residual ξt. Bayesian proxy VARs so far have maintained that ξt follows a standard

normal distribution (Caldara and Herbst, 2019; Giacomini et al. 2021).7 Clearly,

a binary dependent variable creates a fundamental departure from this assumption,

which invalidates inference (see e.g. Maddala, 2013). Under conditional normality

the DC regression (6) provides correct inference.

The SC prior is a generalisation of the narrative sign restrictions used in earlier

studies (Antolin-Diaz and Rubio-Ramirez, 2018; Ludvigson et al., 2017; Ben Zeev,

2018). These papers assume perfect sign concordance. Their restrictions are therefore

a special case of the SC prior with λ = 1. Once the number of events increases beyond

what has been used in these studies, the assumption of λ = 1 may yet turn overly

tight. By allowing for errors in the econometrician’s beliefs the SC prior makes this

type of restriction suitable for larger numbers. As a non-parametric method, the SC

prior does not require any distributional assumptions and is based on set identification

(see Arias et al., 2018). Hence, it may be combined with other types of restrictions

on innovation θt, such as sign restrictions on impulse responses as in Antolin-Diaz

and Rubio-Ramirez (2018).8

6The alternative expression is obtained by multiplying equation (6) with δt, noting that δ2t = 1.
7Arias et al. (2021) take a different route implementing the moment conditions as deterministic

restrictions.
8Technical details are discussed in Annex B.2. Since the SC criterion is non-parametric, it may
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The DC regression and the SC prior may also be combined with each other. Caldara

and Herbst (2019) highlight that in a Bayesian approach the instrument is informative

for the posterior of the reduced form VAR, because it carries information about the

VAR residuals in specific periods. They impose a reliability prior on the correlation

of the instrument with innovations θt to use this feature for sharpening the reduced

form VAR posterior. Similarly, the SC prior attains an interpretation as reliability

prior when applied to draws of α from the DC regression, giving higher weight to

draws that result in high values of sign concordance.

As shown in section 2.3, the assumption of conditional normality allows for estimating

the VAR from a Gibbs sampler based on the conditional distribution. Alternatively,

one may assume unconditional normality and use a classification method that does

not require specific assumptions on the conditional distributions. One option is the

non-parametric SC prior. Another, parametric, alternative to the DC regression

is logistic regression. The latter has however several drawbacks in the application

with proxy VARs. In particular, the efficiency of logistic regression is known to be

impaired by a strongly imbalanced dependent variable, as it gives equal weight to both

types of misclassification. This may, in extreme cases, lead to convergence issues with

uninformative priors.9

Frequentist proxy VARs typically use bootstrap methods for estimating confidence

bands. These methods should, in principle, be able to cope with a non-standard

distribution of the proxy regression residual ξt. However, with a sparse instrument

some care must be taken with choosing an appropriate bootstrap method. Jentsch

and Lunsford (2016) show that standard bootstraps grossly underestimate confidence

bands if instruments are sparse. They propose a modified block bootstrap for this

case, whereas Montiel Olea, Stock, and Watson (2021) present bootstraps that are

also suitable for weak instruments.

also be applied to other types of binary restrictions, such as those on relative magnitudes in the
historical VAR decomposition used by Antolin-Diaz and Rubio-Ramirez (2018).

9The key difference between logistic and DC regression is that the former does not require dis-
tributional assumptions for the classifiers, whereas the latter assumes conditional normality (Efron,
1975). It is precisely this feature that makes the DC regression more efficient with imbalanced
classifiers. A recent study on imbalanced classifiers is Li, Belotti, and Adams (2019). Albert and
Anderson (1984), Allison (2008), and Gosh, Li, and Mitra (2018) study convergence issues.
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Sparse quantitative instruments have been extensively used with frequentist proxy

VARs. They are typically regarded as censored variables, limited to indicating large

realisations of normally distributed innovations (see Mertens and Montiel Olea, 2018).

Our assumption of infrequent mean shifts in the VAR residuals together with condi-

tional normality is a departure from this view. This has raised the question whether

the sparse instrument should be interpreted as signifying specific rare events. One

may view the DC regression this way. We believe that it is also a valid way of looking

at the data in applications related to rare economic events such as major regulatory

changes or fiscal reforms. It is consistent with recent literature that models the resid-

uals of macroeconomic VARs as mixtures of normal distributions and finds modestly

heavy tails in the data, see e.g. Karlsson, Mazur, and Ngyuen (2021). In the end,

however, the issue appears to make little difference for estimation. Our Monte Carlo

simulations discussed in section 3, at least, show only small differences in outcomes

between a standard Bayesian proxy VAR, which assumes unconditional normality,

and the DC regression based conditional normality.

3 Sparse Policy Interventions: a Monte Carlo Study

This section presents Monte Carlo simulations to compare DC and SC restrictions

with standard Bayesian and frequentist proxy VARs. We inspect the bias and un-

certainty in the estimates of impulse responses (IRFs) together with the accuracy of

uncertainty bounds.

The simulations extend upon the econometric framework of section 2 by assuming that

innovations θt include a sparse set of policy interventions ζt, from which we generate

the instrument. We thereby aim to replicate the dynamics of regulatory policies

in a basic way. Our design also allows us to study cases where zt is a contaminated

measure of actual policy interventions with either irrelevant events being added to the

instrument or relevant events missing from the latter. Such a trade-off is important

in practice as the scope of events to be included in a sparse instrument is not well-

defined: for instance, individual interventions may have been not binding or largely

explained by past developments. One, therefore, faces a choice between including
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many events, some of which may be of limited relevance, or focusing on a small set of

major events at the risk of missing relevant information. Mertens and Montiel Olea

(2018) advocate the latter strategy.

We use the data generating process (DGP)

(
xt,1
xt,2

)
= B1

(
xt−1,1
xt−1,2

)
+ A−10

(
ηt + ζt
εt

)
, (9)

where innovations θt = ηt + ζt are the sum of regular innovations ηt and indepen-

dent sparse policy interventions ζt. We let (ηt, εt)
T ∼ N(0, 10−2I2). Sparse policy

interventions ζt are generated by the policy rule

ζ∗t = ωxt−1,2 + νt

ζt = −I(ζ∗t ≥ ζ)ζ+t .

Interventions ζt arise both from exogenous shocks νt and the dependency of the policy

target ζ∗t on the past state of the system. The policy-maker intervenes only once

ζ∗t exceeds a certain threshold ζ. The absolute size ζ+t of interventions is drawn

from a lognormal distribution ln(ζ+t /ζ) ∼ N(−σ2
ζ/2, σ

2
ζ ) such that Eζ+t = ζ and

var(ζ+t ) = exp(σ2
ζ ) − 1. We set T = 200 and calibrate ζ to achieve a number of

interventions of either m = 10 or m = 20, while setting the dispersion of interventions

to σζ = 0.005 or σζ = 0.01. We choose matrix B1 to generate cyclical fluctuations

with a length of 32 quarters in xt and matrix A0 to achieve a correlation of 0.3 among

the VAR residuals together with a large initial response of x1,t to θt.
10

We compare seven models. Two standard Bayesian proxy VARs serve as benchmarks.

Model BVζ uses the true policy interventions ζt as an instrument, whereas model BV ,

like all remaining models, uses the qualitative instrument zt. Both models apply a

standard proxy regression, which assumes a normal distribution of residual ξt as

described in section 2.4. We then consider the DC regression, a uniform SC prior for

λ over interval [0.9, 1], and the combination of the DC regression with the SC prior

10More precisely, we set ζ to values of 0.0164 and 0.0128 for m = 10 and m = 20, respectively,
and discard draws that that do not deliver the desired number of events. See Annex B.3 for further
explanations.
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(model DSC). In all these cases, we use an uninformative prior for the reduced-form

VAR. Among frequentist models, we include a proxy VAR (pV ) with uncertainty

bands obtained from the bootstrap of Montiel Olea et al. (2021). Moreover, we

inspect the widely used local projections (LP ), which employ zt directly as a regressor

rather than as an instrument, with a standard bootstrap for uncertainty bands.11

The first four simulations shown in Table 1 ignore contamination issues in assuming

that the econometrician observes zt = sign(ζt). Note that the instrument never-

theless might differ from sign(θt) in certain periods due to innovations ηt. The table

shows statistics on the standardised IRF of xt,1 including the root mean squared error

(RMSE) and the bias of the central estimate, the [0.1, 0.9] interquantile difference of

its distribution as a measure of its true uncertainty, and the width of the correspond-

ing estimated uncertainty bands. Moreover, Table 1 shows coverage ratios, defined as

the share of draws where the true IRF lies within the estimated uncertainty bands.

Annex C.1 plots the IRFs with true and estimated uncertainty bands.

We find, first, that the DC regression and the standard proxy VAR BV yield sim-

ilar outcomes. Hence, assumption (4) of conditional normality underlying the DC

regression has only modest effects, and the standard proxy VAR appears to work

reasonably well in practice despite the violation of its distributional assumptions.

The DC regression turns out slightly more efficient in all simulations. Both models

modestly overestimate the width of the true uncertainty bands, while coverage ratios

are fairly accurate. Second, the comparison of models BVζ and BV yields only mod-

est efficiency losses from using zt in place of the true policy intervention ζt. Losses

are negligible for a value of σζ = 0.005, while they increase for a higher value of

σζ = 0.01 in simulation (2) due to a higher share of small policy innovations ζt that

are confounded by innovations ηt.

Third, the efficiency of the SC prior falls short of the DC regression, whereas the

overestimation of uncertainty bands is more pronounced. The combination of the

two methods, model DSC, tends to underestimate the width of uncertainty bands at

horizon 0. At horizon 4, however, model DSC is as efficient as model DC and

11The models are described in more detail in Annex B.3. For models pV and LP , we build on the
replication files of Mertens and Montiel Olea (2018).
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Table 1: Monte Carlo Simulations

h = 0 h = 4

m 100*σζ BVζ BV DC DSC SC pV LP DC DSC

(1) Baseline
10 0.5 RMSE .13 .13 .13 .15 .19 .14 .30 .13 .13

Bias -.05 -.03 -.06 -.07 -.14 -.03 .01 -.10 -.10
IQD .40 .45 .43 .47 .57 .45 .96 .35 .35
UB .44 .51 .51 .39 .73 .72 1.13 .41 .34
CR .78 .77 .83 .74 .90 .86 .85 .72 .67

(2) Baseline
10 1.0 RMSE .14 .18 .17 .21 .27 .18 .35 .16 .17

Bias -.01 -.06 -.08 -.10 -.20 -.04 .01 -.12 -.13
IQD .41 .55 .52 .65 .81 .54 1.11 .41 .42
UB .41 .60 .60 .44 .80 .95 1.51 .48 .40
CR .73 .79 .81 .67 .83 .88 .87 .69 .63

(3) Baseline
20 0.5 RMSE .10 .11 .10 .11 .15 .11 .20 .10 .10

Bias .03 .02 -.02 -.03 -.08 .02 .02 -.06 -.06
IQD .30 .34 .31 .35 .46 .33 .65 .28 .30
UB .28 .33 .33 .28 .56 .41 .84 .31 .29
CR .74 .78 .82 .72 .90 .88 .88 .77 .75

(4) Lagged dependency
10 0.5 RMSE .14 .15 .15 .17 .21 .16 .31 .16 .16

Bias -.05 -.05 -.09 -.09 -.17 -.05 -.01 -.13 -.12
IQD .42 .47 .46 .52 .64 .48 .99 .35 .37
UB .52 .61 .56 .42 .76 .77 1.16 .45 .39
CR .84 .84 .83 .73 .88 .85 .84 .67 .69

(5) Redundant events
10 0.5 RMSE .23 .24 .27 .21 .46 .20 .20

Bias -.18 -.17 -.23 -.10 -.45 -.19 -.18
IQD .67 .75 .84 .62 .62 .45 .46
UB .86 .57 .88 1.03 .84 .63 .46
CR .85 .72 .85 .88 .47 .63 .61

(6) Unobserved events
20 0.5 RMSE .16 .17 .20 .17 .31 .14 .14

Bias -.07 -.07 -.14 -.04 -.07 -.11 -.10
IQD .50 .51 .60 .50 .95 .35 .36
UB .59 .44 .85 .80 1.13 .47 .38
CR .85 .74 .93 .89 .84 .75 .76

The table shows statistics of standardized IRFs at horizons h = 0 and h = 4. m is the number of

interventions, while σζ is the dispersion of policy shocks and ω is the weight of the lagged policy target

in the policy rule (see equation (9)). RMSE and Bias are the root mean squared error of the estimate

and its difference to the true IRF, respectively. IQD is the [0.1, 0.9] interquantile difference of the

distribution of the central estimate measuring of its true uncertainty, while UB is the corresponding

estimated uncertainty bands. CR stands for the coverage ratio, the share of draws where the true

IRF lies within the estimated bands with a correct value of .80. The models and further simulation

details, in particular simulations (5) and (6), are explained in the main text. We take 1000 draws.
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uniformly provides more accurate estimates of uncertainty bands, as the information

from the SC posterior feeds back into the posterior reduced-form VAR coefficients.

Fourth, the Bayesian approach outperforms frequentist models. While the central

estimates from the frequentist proxy VAR are very similar to those from the DC

regression by construction, the bootstrap of Montiel Olea et al. (2021) clearly overes-

timates uncertainty bands. We found this outcome also for the bootstrap of Jentsch

and Lunsford (2016). Local projections, which include zt directly as a regressor, are

clearly less efficient than any of the above models. We note that our simulations

ignore invertibility issues, which are an advantage of local projection methods com-

pared to proxy VARs (Stock and Watson, 2018). The efficiency losses are yet to be

considered when comparing the various methods.12

The final two simulations deviate from the specification zt = sign(ζt) to study the

implications of observation errors in instrument zt. We consider the trade-off between

the two possibilities that the econometrician either misses relevant interventions in

instrument zt or mistakenly includes redundant interventions. We take the perspec-

tive of an econometrician who faces 20 potential policy events but is ignorant about

their relevance. Simulation (5) assumes that the econometrician mistakenly adds 10

redundant events to zt, which do not correspond to policy shocks ζt: we generate

m = 10 true events ζt and add another 10 random non-zero observations to zt. Sim-

ulation (6) studies the case that the econometrician misses 10 relevant events: we

generate m = 20 events ζt, but remove 10 of those events from zt.

We find that redundant events create clearly larger distortions than missed events.

The removal of 10 relevant events in simulation (6) creates only a modest increase in

the RMSE compared to simulations (1) and (3). By contrast, keeping 10 irrelevant

events as in simulation (5) almost doubles the RMSE, partly because of downward

biases in the estimates. The SC prior improves somewhat relative to the DC regres-

sion in both cases. Model DSC turns out best, as it produces the most accurate

estimates of uncertainty bands. Overall, the results suggest a conservative approach

to constructing sparse instruments, while combining the DC regression with an SC

prior seems to provide some insurance against observation errors.

12See Kilian and Kim (2011) and for a related study.
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Annex B.3 shows further simulation results based on an alternative DGP that as-

sumes unconditional normality of the VAR residuals. We set ζt ≡ 0 and select the

instrument among the larger realisations of ηt. The simulation design implies per-

fect sign concordance between the realisations of zt and θt, and thereby generates a

stronger instrument. We find the above results confirmed, yet with two exceptions.

First, under perfect sign concordance, model SC based on a value of λ = 1 turns out

even more efficient than the DC regression. However, uncertainty bands remain over-

estimated. Model DSC clearly performs best in this case, as it combines the higher

efficiency of the SC prior with accurate uncertainty bands. Second, the bootstrap

of Montiel Olea et al. (2021) now provides fairly accurate uncertainty bands for the

frequentist proxy VAR.

4 Macroprudential Policy Interventions in the U.S.

We apply our approach to estimating the effects of policy interventions related to bank

capital requirements and underwriting standards on mortgage credit in the postwar

U.S. Capital requirements and borrower-based measures (of which underwriting stan-

dards are an important category) represent the most widely used macroprudential

policy instruments since the 2008 Global Financial Crisis. The impact assessment

of these policies is still impeded by the poor quality of data on policy interventions.

Macroprudential policies have been carved out from supervisory and regulatory poli-

cies only after 2008. The historical interventions are scattered across time and cover

highly diverse instruments. Accordingly, historical databases differ substantially in

their coverage of policy interventions reflecting a fundamental ambiguity in the ex-

post classification of individual interventions as being of a macroprudential nature

(Budnik and Kleibl, 2018). Altogether, these difficulties inhibit the construction of

quantitative time series of the policy stance.

The majority of studies on the macroeconomic effects of macroprudential policies,

therefore, use binary indicators in cross-country panel regressions to assess the effects

of interventions on credit volumes and house prices.13 Galati and Moessner (2017)

13See, e.g. Vandenbussche et al. (2015), Cerutti, Claessens and Laeven (2017), and Budnik (2020).
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note that these studies thereby remain silent on issues such as the persistence of these

effects and transmission lags. In particular, given that macroprudential tightening

reduces credit, it may have macroeconomic effects in terms of lower output and higher

interest rates. Balancing these effects against financial stability benefits is key to the

design of optimal policies and the coordination of macroprudential with monetary

policies (Van der Ghote, 2021). The macroeconomic dynamics triggered by policy

interventions has yet been addressed only by a few empirical studies. Richter, Schu-

larick, and Shim (2019) and Pogoshyan (2020) use panel local projection methods

to estimate the effects of borrower-based measures. These studies report declines in

credit and house prices over horizons of four years. Richter et al. (2019) also study

GDP and inflation. They find a decline in GDP after a tightening of loan-to-value ra-

tios for emerging economies but no effect for advanced economies. At the same time,

inflation tends to increase in both cases. Kim and Mehrotra (2017, 2018) include the

count of policy events as an endogenous variable in a structural panel VAR. They

identify macroprudential policy shocks from a Choleski decomposition assuming a

zero contemporaneous response of these shocks to all other innovations apart from

monetary policy. For a panel of 17 emerging and advanced economies, they find small

negative effects on both GDP and inflation.

We study the macroeconomic effects of macroprudential policies for the U.S over

the period of 1958Q1 to 2016Q4. Our VAR includes seven series: real GDP (yt),

consumer prices (pt), the effective Federal Funds Rate (rt), the spread between the

rate of return on BAA corporate bonds and the 10-year Treasury Bond (rCt ), real

total credit to the non-financial corporate sector (cPt ) and the household sector (cHt ),

and real residential property prices (ht). With the exception of interest rates, the

series enter the VAR as quarterly log-differences. The data are taken from the FRED

database. For residential property prices, we use the Shiller U.S. national home price

index. The credit data are from the BIS long credit statistics.14

14See https://fred.stlouisfed.org/ and https://www.bis.org/statistics/totcredit.htm.
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4.1 The Narrative Instruments

The primary source of our information on capital requirements and mortgage un-

derwriting standards is the database of Elliott, Feldberg, and Lehnert (2013), which

contains a wide range of policy interventions addressing macro-financial risks in the

U.S. between 1914 and the early 1990s. We augment the information provided by

Elliot et al. (2013) until the end of 2016, adding interventions related to capital

requirements introduced after the Basel Accords and Agreements based on various

sources. For both types of policies, we define instrument zt such that zt = −1 in

case an expansionary measure was set in period t, zt = 1 in case of a contractionary

measure, and zt = 0 otherwise. This results in 10 events each for capital requirements

and underwriting standards. The events are listed in Annex A.

Figure 2: The Narrative Indicators

1955 1965 1975 1985 1995 2005 2015

Capital Requirements

1955 1965 1975 1985 1995 2005 2015

Underwriting Standards Mortgages

Positive values indicate policy tightenings, while negative values indicate easings.

Although these policy interventions aimed at controlling macro-financial risks, they

are still likely to represent contemporaneously exogenous shocks. As argued by

Richter et al. (2019), a response of macroprudential authorities to macro-financial

shocks within the same quarter is rather unlikely. Instead, authorities would respond

at a certain point in time to imbalances that have accumulated over the past. Such de-

layed response is reinforced by the specificities of the U.S. institutional framework, as

the responsibility for policy interventions has been distributed over different agencies,

including the U.S. Congress. Policy actions typically required multiple consultations

ECB Working Paper Series No 2353 / January 2020 21



rendering the exact timing of policy actions less predictable (Elliot et al., 2013).

Hence, condition E(εt|zt) = 0 in equations (3) is very likely satisfied.

We also examine lagged dependencies of the indicators on the endogenous variables xt

included in the VAR from ordered probit regressions. Table 2 shows the results from

likelihood ratio tests of the joint significance of coefficients related to each series.

The regressions indicate lagged dependencies of the indicators on their respective

main target variables only at higher lags. When including four lags, we find some

predictive power of credit to households for capital requirements and the corporate

bond spread and house prices for underwriting standards. However, these effects

vanish if only the first two lags of xt are considered. We remove one event from the

capital requirements indicator that is correctly classified by the probit.

Table 2: Lagged Dependencies of the Instruments

Capital requirements yt pt rt st cPt cHt pHt

p = 2 .84 1.69 0.84 1.62 1.12 4.96 4.08
p = 4 4.88 6.02 5.38 6.93 7.16 **13.78 4.20

Underwriting standards yt pt rt st cPt cHt pHt

p = 2 1.00 1.65 *7.15 3.56 .02 1.70 1.66
p = 4 3.05 2.09 7.89 *9.51 .84 3.18 *10.03

The table shows the LR statistics of βj,1 = . . . = βj,p = 0 from ordered probits regressing instrument

zt on the variables included in the VAR at lags 1 to p. Lags are set to either p = 2 or p = 4. The

statistics are χ2-distributed with 2 and 4 df, respectively. ’*’ and ’**’ indicate significance at 5%

and 1% levels, respectively.

4.2 Impulse Responses to Policy Shocks

We turn to estimates of the impulse responses (IRFs) to macroprudential policy in-

novations from the narrative VAR. We consider three models, i.e. the DC regression,

the SC prior, and the combination of the two criteria in model DSC, which gives

the SC criterion an interpretation as reliability prior. We specify the prior for λ as a

uniform distribution over support [0.9, 1]. We use the seven variables described above,

include eight lags and impose a standard Minnesota prior on the reduced form VAR
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based on a standard Normal-Wishart prior for B+ as described by Karlsson (2013).15

Figure 2 shows the sign concordance posteriors from the three models. For underwrit-

ing standards, the number of correctly classified events peaks at a value of 9 out of

10 events with little difference between DC and SC restrictions. For capital require-

ments, the DC restriction gives rise to a substantial share of draws with a low sign

concordance of ϕ < 0.5 resulting in a median value of the SC posterior of below 0.7.

In both cases, the combination of the DC regression with the SC prior acts to reduce

the weight of draws with low ϕ shifting the SC posterior to the right compared to

both the DC regression and SC prior used in isolation.

Figure 3: Sign Concordance Posterior Densities

Capital Requirements
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Underwriting Standards
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Prior DC Regression with SC Prior SC Prior DC Regression

The shaded area shows the posterior density of the sign concordance statistics

mϕ for model DSC. The lines show the same posterior density for models DC

and SC and the sign concordance prior.

The impulse responses (IRFs) to a policy tightening in capital requirements and

underwriting standards are shown in Figures 3 and 4. They are standardized to

give the response to a shock of size θt = 1. We show results for nominal residential

property prices pHt . The IRF estimates turn out very similar across the three models.

In line with the simulation results from section 3, estimates based on the SC prior

15We specify the prior variance of coefficient Bs,ij as τs,ij = (π0∗s(−π3

i )2sj , where si is the residual
variance of an univariate autoregressions of series yi,t. We set overall tightness π0 = 0.2, lag decay
π3 = 0.5, and use a mean value of B1,ii = 0.3 for the first own lag. For Σ, we use an inverse Wishart
prior IW (S, n + 2), where S is a diagonal matrix with elements si on the main diagonal. We take
1000 draws.
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Figure 4: Standardized IRFs Capital Requirements
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Figure 5: Standardized IRFs Underwriting Standards
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The graphs show the median estimates of IRFs to a shock of 1 % from models

DSC, DC, and SC, together with [0.10, 0.90] quantiles for model DSC.
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tend to deliver somewhat smaller median responses and larger confidence bounds

compared to models DC and DSC (Fig. Annex C.1).

For both measures, a policy tightening induces a persistent decline in credit, while

the corporate bond spread is subject to a small but significant increase. At the same

time, economic activity and inflation decline. The effects of the two types of policy

measures differ in two ways. First, the impact of a change in capital requirements

is concentrated on corporate credit while leaving household credit and house prices

unaffected. By contrast, a change in underwriting standards affects both credit cat-

egories and results in a pronounced decline in house prices. Second, the impact of

a change in capital requirements is less persistent. The response of corporate credit

peaks after about two years, while the effect on economic activity reverses after four

quarters. For underwriting standards, the responses of both series stabilize only after

about 4 years and are highly persistent.

Table 3 presents the average effect of a policy intervention on the series included in

the VAR as estimated from model DSC. For each draw, we multiply the IRF with

the corresponding estimate of γ, which is obtained as the average of sign-adjusted

innovations, γ̂ = m−1
∑T

t=1 θtzt. We find a larger impact of underwriting standards

compared to capital requirements. Interventions on underwriting standards on aver-

age, resulted in declines of corporate and household credit of 0.8% and 1.2%, respec-

tively, after 32 quarters, while house prices dropped by close to 2.2%. Interventions

on capital requirement induced a decline in corporate credit of 0.7% but had little

effect on household credit and house prices. In both cases, GDP declined by about

0.3% after a year, while the corporate bond spread increased by close to 10 basis

points.

Our estimates of the short-term response of credit and house prices are in line with

the literature based on cross-country panel regressions. In a meta-analysis of these

studies, Gadea-Rivas, Bräuer and Perez-Quiros (2019) find an average response of

credit volumes of about 0.5% in advanced economies after a year. Pogoshyan (2020)

reports similar outcomes for credit and house prices in the euro area based on local

projection methods. Medium-term effects have so far only been addressed by Kim and

Mehrotra (2017, 2018) for emerging economies. Our estimates for the U.S. indicate

ECB Working Paper Series No 2353 / January 2020 25



long transmission lags in the responses to borrower-based measures and moderate but

significant declines in economic activity. Moreover, the weak response of household

credit and housing prices to a change in capital requirements suggests that a shift

towards a credit portfolio subject to lower risk weights is an important element in

banks’ responses to these policies.

Table 3: Average Impact of Policy Innovations

Capital requirements yt pt rt st cPt cHt pHt

h 4 4 4 1 32 32 32
0.1 - .47 -.37 -.37 .01 -1.31 -.96 -1.31
0.5 -.24 -.12 -.18 .06 -.58 -.12 -.16
0.9 -.02 .14 .01 .13 .06 .83 1.02

Underwriting standards yt pt rt st cPt cHt pHt

h 4 4 4 1 32 32 32
0.1 -.62 -.54 -.42 .02 -1.97 -2.58 - 3.91
0.5 -.33 -.20 -.19 .09 -.93 -1.31 -2.21
0.9 -.04 .12 .04 .17 .03 -.17 -.74

The table shows the median and 0.1 and 0.9 quantiles of responses to the average policy shock

from model DSC at different horizons (quarters), as indicated in row h.

4.3 Robustness

Our first concern is the validity of the invertibility condition discussed in section 2.

In the main estimates, the instrument is set to non-zero values in the periods when

policy interventions entered into force. However, it cannot be ruled out that the effects

of these interventions are only partly spanned by the VAR forecast errors in these

periods. As discussed by Stock and Watson (2018), any effect of policy interventions

not spanned by the forecast errors at implementation would necessarily materialise

in forecast errors in subsequent periods.

With a binary instrument, the validity of the invertibility condition can therefore be

explored by projecting the instrument on the VAR forecast errors subsequent to the

period of implementation.16 Table 4 reports the outcome of a related exercise based on

16The impact of an event Θt can be expressed as P(xt+h− xt|Θt) =
∑h
s=0 CiP(ut+h−s|Θt), where

P is the linear projections operator and xt =
∑∞
s=0 Csut−s is the moving average representation of

the VAR. The invertibility condition P(Θt|ut) = θt implies P(ut+h−i|θt) = 0 for i 6= h.
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model DC, where we set the instrument to non-zero values simultaneously for lags 1

to 4 after the implementation date. We thereby integrate over potential effects across

the individual lags. We find minor further negative effects on household credit and

house prices for both policy measures, but none of these would approach significance

or alter our conclusions. We also experimented with setting the instrument to non-

zero values at individual lags, using the SC prior as a selection criterion to attach

larger weights to lags that generate further effects. This gave similar results. The

IRFs from these exercises are shown in Figure C.4 in Annex C.

Table 4: Robustness Check against Lagged Impacts

Capital requirements yt pt rt st cPt cHt pHt

h 4 4 4 1 32 32 32
0.1 - .11 -.14 -.10 -.05 -.21 -.78 - .93
0.5 .00 -.01 -.00 -.00 .09 -.25 -.25
0.9 .12 .11 .09 .04 .48 .09 .27

Underwriting standards yt pt rt st cPt cHt pHt

h 4 4 4 1 32 32 32
0.1 -.24 -.14 -.10 -.02 -.47 -.68 -.74
0.5 -.08 -.01 -.01 .01 -.08 -.16 -.09
0.9 .02 .13 .10 .04 .21 .17 .43

The table shows the median and 0.1 and 0.9 quantiles of lagged responses to policy interven-

tions from model DSC at different horizons (quarters), as indicated in row h.

The results of further robustness checks are shown in Figures C.5 and C.6. We con-

sider estimates based on an uninformative prior for the reduced-form VAR coefficients

using 4 lags and add a banking deregulation index as an exogenous variable to the

baseline VAR to control for the deregulation of the U.S. banking sector in the 1980s

(Mian, Sufi, and Verner 2017). Finally, estimates from the standard Bayesian and

frequentist proxy VARs again are very similar to those from model DSC.

5 Conclusions

This paper studied estimation methods for Bayesian structural VARs that are iden-

tified from sparse narrative information, which may be subject to errors. First, we
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showed that a discriminant (DC) regression, based on the assumption of conditional

normality, represents a minor adaptation of the standard Bayesian proxy VAR. Con-

sequently, the standard approach turns out to perform fairly well in practice. Second,

a non-parametric sign concordance (SC) criterion tends to be less efficient than the

DC regression but proves useful as a reliability prior in combination with the latter.

These methods should be useful for assessing the effects of policies in areas where

interventions are infrequent and difficult to quantify. Our Monte Carlo simulations

indicate that efficiency losses from using binary instruments remain contained, while

Bayesian VARs tend to outperform frequentist approaches. In a recent paper, Gia-

comini et al. (2022) make a strong case for a Bayesian approach to sparse narrative

proxies by showing that the assumptions required for the asymptotic validity of the

Montiel Olea et al. (2021) bootstrap are violated for weak sparse instruments. More-

over, applications may benefit from Bayesian approaches to estimating large VARs.

For instance, studies of regulatory policies typically use cross-country panel data

since interventions in individual countries are rare. This suggests using a panel proxy

VAR, with clear benefits from Bayesian estimation. Such an approach is pursued by

Rünstler (2021) in a study on the effects of labour market reforms in the euro area.

Our application to the effects of macroprudential policies in the postwar U.S. indi-

cates long transmission lags in the response of credit and house prices, in particular

for borrower-based measures. Studies based on cross-country panel regressions typi-

cally inspect rather short horizons and may therefore understate the effects of these

policy measures. We also found moderate but significant declines in economic activity

and a widening of corporate bond spreads after a policy tightening, pointing to bene-

fits from a coordination of macroprudential with monetary policies. Our findings are

informative about the impact of general shifts in credit supply and in household col-

lateral constraints and underpin the high persistence of leverage cycles documented,

for instance, by Claessens et al. (2012) and Rünstler and Vlekke (2018). Similarly,

Fieldhouse et al. (2018) have stressed that the easing of borrowing constraints due

to financial innovation has materialized in house prices only with long lags.

ECB Working Paper Series No 2353 / January 2020 28



References

Albert, A. and Anderson, J.A. (1984). On the existence of maximum likelihood estimates in logistic
regression models. Biometrika 71(1): 1-10.

Allison, B. (2008). Convergence failures in logistic regression. SAS Global Forum 360-2008. Univer-
sity of Pennsylvania, Philadelphia, PA.

Antolin-Diaz, J. and Rubio-Ramirez, J. (2016). Narrative sign restrictions for VARs. American
Economic Review 108(10), 2802-29.

Arias, J., J. Rubio-Ramirez, and Waggoner, D. (2018). Inference based on SVARs identified with
sign and zero restrictions: theory and applications. Econometrica 86(2), 685-720.

Arias, J., Rubio-Ramirez, J., and Waggoner, D. (2021). Inference in Bayesian proxy-SVARs. Journal
of Econometrics 225(1), 88-106,.

Ben Zeev, M. (2018). What can we learn about news shocks from the late 1990s and early 2000s
boom-bust period? Journal of Economic Dynamics and Control 87, 94-105.

Budnik, K. and Kleibl, J. (2018). Macroprudential regulation in the European Union in 1995-2014:
Introducing a new data set on policy actions of a macroprudential nature. ECB working paper 2123.

Budnik, K. (2020). The effect of macroprudential policies on credit developments in Europe Union
1995-2017. ECB working paper 2462.

Caldara, D. and Herbst, E. (2019). Monetary policy, real activity, and credit spreads: evidence from
Bayesian proxy SVARs. American Economic Journal: Macroeconomics 11(1), 157-192.

Cerutti, E., Claessens, S. and Laeven, L. (2015). The use and effectiveness of macroprudential
policies, Journal of Financial Stability 28(C), 203-224.

Chen, S. X. and Liu, J. S. (1997). Statistical applications of the Poisson-Binomial and conditional
Bernoulli distributions. Statistica Sinica 7, 875–892.

Claessens, S., Kose, M. and Terrones, M. (2012). How do business and financial cycles interact?
Journal of International Economics 87(1), 178-190.

Elliot, D., Feldberg, G., and Lehnert, A. (2013). The history of macroprudential policies in the
United States. Office of Financial Research Working Paper 0008.

Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant analysis.
Journal of the American Statistical Association 70, 892-898.

Fieldhouse, A., Mertens, M. and Ravn, M. (2018). The macroeconomic effects of government asset
purchases: evidence from postwar US housing credit policy. The Quarterly Journal of Economics
133(3), 1503-1560.
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Annex A: The Narrative Indicators

Capital Requirements

1981/15/12 Tightening

The Federal Reserve Board and the Office of the Comptroller of the Currency introduce capital

standards common to all banks. The standards employ a leverage ratio of primary capital

(which consisted mainly of equity and loan loss reserves) to average total assets. Standards

differ slightly by type of institution, with a value of 6 % for community banks and 5 % for

large regional institutions. Source: Federal Deposit Insurance Corporation (FDIC).

1983/03/01 Tightening

Congress passes the International Lending Supervision Act (ILSA). This statute directs the

banking regulators to ”achieve and maintain adequate capital by establishing minimum levels

of capital” for banks subject to regulation. The ILSA was enacted in response to the Latin

American debt crisis, which revealed a high risk of the foreign sovereign debt exposure of

some U.S. banks. The law also put on firmer footing the regulators’ authority to issue capital

adequacy rules. Source: Federal Register.

1985/15/06 Tightening

Regulators abolish the differences in bank leverage by type of bank as established in the

1981/15/12 Act in favour of a uniform standard of 5.5 %. Banks with less than 3% of

primary-capital-to-total assets are declared to be ”operating in unsafe condition” and are

made subject to enforcement actions. Source: FDIC.

1990/31/12 Tightening

The first stage of the Basel I rules is enacted by U.S. regulators imposing two requirements

on capital ratios, related to Tier 1 and Tier 2 capital. First, Basel I calls for a minimum

ratio of total (Tier 1 plus Tier2 ) capital to risk-weighted assets (RWA) of 8 %, and of Tier 1

capital to risk-weighted assets of 4 %. The first stage requires respective ratios of 7.25% and

3%, while the full are phased in until the end of 1992. Source: Posner (2014).17

1991/19/12 Tightening

The Federal Deposit Insurance Corporation Improvement Act categorises institutions accord-

ing to their capital ratios. Other than ”well capitalised” banks (at least 10 % total risk-based,

6 % Tier 1 risk-based, and 5% leverage capital ratios) face restrictions on certain activities

and are subject to mandatory or discretionary supervisory actions. Source: Government

Publishing Office (GPO).

1992/31/12 Tightening

The final implementation stage of the Basel I rules is enacted by U.S. regulators with the own

funds ratio set to 8%, and the leverage ratio set to 4%. Source: Posner (2014).

17Posner, E. (2014). How do bank regulators determine capital adequacy requirements? Coase-
Sandor Institute for Law & Economics Working Paper 698.
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2002/01/01 Easing

The Recourse Rule reduces risk weights for AAA- and A.A.- rated ”private-label” mortgage-

backed securities (MBS) and collateralised debt obligation (CDO) tranches originated by

large banks to 0.2 in line with government-sponsored enterprise (GSE)–originated MBS. For

A-rated tranches, the risk weights are set to 0.5, while lower-rated tranches are assigned

higher risk weights. The rule is designed to encourage securitisation without encouraging

risk-taking, while risk weights are kept close to 2004 Basel II risk weights. Source: Posner

(2014).

2006/31/12 Tightening

The Tier 1 leverage ratio is increased to 4 %. Source: Posner (2014).

2013/01/01 Tightening

The Federal Reserve Board approves a final rule to implement changes to the market risk

capital rule, which requires banking organisations with significant trading activities to adjust

their capital requirements to better account for the market risks of those activities (Basel II.5).

The adoption of Basel II.5, also known as the market capital risk rule, has been issued by the

U.S. federal banking regulators on June 7, 2012. Source: Federal Reserve Board (FRB).

2013/30/07 Tightening

The Federal Reserve Board (FRB) introduces a Annexary leverage ratio requirement of 3% for

banks using the advanced approach for RWA calculation. An additional 2% buffer requirement

has been proposed for G-SIBs. Further, IRB banks are required to apply the lower of capital

ratios calculated under the standardised and IRB approaches. Source: FRB.

Mortgage Underwriting Standards

1958/01/04 Easing

Changes to requirements on loans insured by the Veteran Administration. Removal of 2%

down payment requirement on insured loans. Act of Congress changes requirements on loans

insured by the Federal Housing Administration. (i) LTV for new construction, 97% of first

$ 13,500 of value plus 85% of next USD 2,500 plus 70% of value in excess of $ 16,000 to

maximum mortgage of USD 20,000. (ii) LTV for existing construction, 90% of first US$D

13,500 of value plus 85% of next $ 2,500 plus 70% of value in excess of $ 16,000 to maximum

mortgage of $ 20,000. Source: Elliot et al. (2013).

1959/23/09 Easing

Act of Congress changes requirements on loans insured by the Federal Housing Administra-

tion. (i) LTV for new construction, 97% of first $ 13,500 of value plus 90% of next $4,500 plus

70% of value in excess of $18,000 to maximum mortgage of $ 22,500. (ii) LTV for existing

construction, 90% of first $18,000 of value plus 70% of value in excess of $18,000 to maximum

mortgage of $ 22,500. Source: Elliot et al. (2013).
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1961/30/06 Easing

Act of Congress changes requirements on loans insured by the Federal Housing Administra-

tion. (i) LTV for new construction set to 97% of first $15,000 of value plus 90% of next

$5,000 plus 75% of value in excess of $20,000 to maximum mortgage of $25,000. (ii) LTV for

existing construction, 90% of first $20,000 of value plus 75% of value in excess of $20,000 to

maximum mortgage of $25,000. (iii) Easing of maturity standards for new construction, max-

imum mortgage term raised from 30 to 35 years or 3/4 of the remaining life of improvements,

whichever is less; existing construction still 30 years. Source: Elliot et al. (2013).

1964/01/01 Easing

National banks are allowed to extend real estate loans with 25-year terms and 80% LTV if

fully amortised. Source: Elliot et al. (2013).

1964/02/09 Easing

Act of Congress changes requirements on loans insured by the Federal Housing Administra-

tion. (i) LTV for new construction, 97% of first $15,000 of value plus 90% of next $5,000 plus

75% of value in excess of $20,000 to maximum mortgage of $30,000. (ii) LTV for existing

construction, 90% of first $20,000 of value plus 75% of value in excess of $20,000 to maximum

mortgage of $30,000. Source: Elliot et al. (2014).

1965/10/08 Easing

Act of Congress changes requirements on loans insured by the Federal Housing Administra-

tion. (i) LTV for new construction, 97% of first $15,000 of value plus 90% of next $5,000 plus

80% of value in excess of $20,000 to maximum mortgage of $30,000. (ii) LTV for existing

construction, 90% of first $20,000 of value plus 80% of value in excess of $20,000 to maximum

mortgage of $30,000. Source: Elliot et al. (2013)

1970/01/01 Easing

National banks are allowed to extend real estate loans with 30-year terms and 90% LTV if

fully amortised. Source: Elliot et al. (2013).

1974/01/01 Easing

National banks are allowed to extend real estate loans with 30-year terms and 90% LTV if

75% amortised. Source: Elliot et al. (2013).

1983/01/09 Easing

LTV limits are removed for all bank mortgage loans (Garn-St Germain). Source: Elliot et al.

(2013).

2014/30/01 Tightening

A New Ability to Repay (ATR) and Qualified Mortgage (Q.M.) Rule by Consumer Finan-

cial Protection Bureau (CFPB) establishes a minimum set of underwriting standards in the

mortgage market. For qualified mortgages, the borrower must prove a debt service-to- income

ratio no greater than 43%. Source: CFPB.
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Annex B.1: Linear Discriminant Analysis

This Annex outlines the relation of the DC regression to discriminant analysis, following Maddala

(2013).

Consider a dichotomous variable zt that takes the value z∗t = 1 for m observations and z∗t = 0 for

the remaining T −m observations. The objective of discriminant analysis is to estimate function

ψ(xt) to predict z∗t from a set of random variables xt = (x1,t, . . . , xn,t) based on the rule ẑ∗t = 1

if ψ(xt) > 0 and ẑ∗t = 0 otherwise (e.g. Maddala, 2013: 79ff). ψ(xt) is chosen to minimise the

objective function

C = C1

∫
R1

f1(xt)dx+ C0

∫
R0

f0(xt)dx,

where fk(xt) denote the conditional distributions of xt|z∗t = k. R1 defines the region such that

ψ(xt) > 0 if xt ∈ R1 and R0 is the complement of R1. Ck is the cost of misclassifying a member of

group Gk.

Under the assumption that xt|z∗t = 1 ∼ N(µ1,Σ) and xt|z∗t = 0 ∼ N(µ0,Σ), the optimal dis-

criminant function is linear, ψ(xt) = ψT1 xt. Under the specific loss function mC1 = (T − m)C0,

the maximum likelihood estimate of parameter vector ψ1 maximizes the ratio of the squared dif-

ference in means between groups and the variance within groups, (ψT1 Σψ1)−1
[
ψT1 (µ1 − µ0)

]2
. This

is equivalent up to scale to estimating a via OLS from the regression z∗t = a0 + aTxt + ξt, where

z∗t = zt −m/T (Maddala, 2013:18ff).

Annex B.2: Further Details on the Structural VAR

Identifying Restrictions

Section 2 specifies the identifying conditions (3) in terms of conditional expectations, whereas the

literature typically defines them in terms of covariances (e.g. Stock and Watson, 2018) as

cov(θt, zt) > 0

cov(εt, zt) = 0.
(10)

This section shows that the two specifications are equivalent in the case of a binary instrument. To

see this, note that the covariance between a continuous random variable ηt and a binary random

variable zt can be expressed in terms of conditional expectations. For symmetry reasons, it again

suffices to show this for a purely binary instrument. Assume, therefore, that zt is a random variable

that takes a value of one with probability 0 < λ < 1 and is zero otherwise. The covariance cov(ηt, zt)

then can be expressed as
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cov(ηt, zt) = E(ηtzt)− EηtEzt

= λE(1ηt|zt = 1) + (1− λ)E(0ηt|zt = 0)− λEηt

= λE(ηt|zt = 1)− λ (λE(ηt|zt = 1) + (1− λ)E(ηt|zt = 0))

= λ(1− λ) [E(ηt|zt = 1)− E(ηt|zt = 0)]

It follows immediately that conditions (3) imply conditions (10), as cov(θt, zt) = λ(1 − λ)γ and

cov(εt, zt) = 0.

Vice versa, we combine conditions (10) with the assumption that zt = 0 does not convey infor-

mation about the VAR residuals, E(θt|zt = 0) = E(εt|zt = 0) = 0. Hence, E(θt|zt = 1) =

[λ(1− λ)]−1 cov(θt, zt) > 0 and E(εt|zt = 1) = 0. Conditions (10) therefore imply conditions (3) un-

der the additional assumption. From equation (2), the assumption E(θt|zt = 0) = E(εt|zt = 0) = 0

is equivalent to E(ut|zt = 0) = 0, which replaces the standard condition Eut = 0 in our model. It

is, therefore, required as a normalisation condition for identifying the constant term c of the VAR

(1), as is obvious from section 2.3 on estimation. Hence, the two specifications are equivalent. Note

that conditions (3) do actually not require zt to be a random variable.

Constructing matrix A0

Consider the moving average representation of equation (2)

xt = (
∞∑
s=0

Ψs)A
−1
0 c+

∞∑
s=0

ΨsA
−1
0 ε+t−s

where (ε+t−s)
T = (θt, ε

T
t )T and ) matrices Ψs are the elements of lag polynomial Ψ(L) = B−1(L)

with B(L) = In−
∑p
s=1BsL

s. Ψ(L) defines the IRF of SVAR given by equations (1) and (2). Since

Ψ0 = In, matrix A−10 gives the contemporaneous impact of the structural innovations on the VAR

series.

We first review the construction of matrix A0 as, e.g. set out in Arias et al. (2018). The condition

ut = A−10 ε+t , together with EutuTt = Σ and Eε+t (ε+t )T = In, implies Σ−1 = AT0 A0. Further, matrix

A0 can be expressed as AT0 = A∗Q, where A∗ is a unique lower triangular matrix derived from

the Choleski decomposition Σ−1 = A∗A
T
∗ and Q = (q1, . . . , qn) is an arbitrary orthogonal matrix,

QT = Q−1, that is constructed such that A0 satisfies certain restrictions. Arias et al. (2018) show

how random draws of Q that satisfy deterministic restrictions may be constructed in a recursive

way from a Gram-Schmidt orthogonalisation: column qj is obtained by drawing an n × 1 vector

xj ∼ N(0, In) and deriving qj such that qj is orthogonal to (q1, . . . , qj−1) and satisfies further

deterministic restrictions specific to innovations ε+t,j .

In case of the DC restriction, vector α defines the first column of A0, which implies q1 = A−1∗ α.
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The reverse expression α = A∗q1 is used in case of the SC restriction. An uninformative random

draw of α is obtained by drawing q1 from the Haar measure of orthogonal matrices as q1 = v/||v||,

with random draw v ∼ N(0, In). In both cases, the remaining columns of matrix Q are irrelevant

and are constructed without further restrictions, as explained in Arias et al. (2018). Note that q1

suffices for defining the contemporaneous impact of θt, as A−10 = (AT∗ )−1Q and the first column of

A−10 is therefore well-defined and independent of all qj with j > 1.

Combination with Sign and Zero Restrictions

DC and SC restrictions may also be embedded in the approach of Arias et al. (2018) and thereby

be combined with zero and sign restrictions on IRFs. Define g(A0,Ψ(L)) =
[
ΨT

0 ,Ψ
T
1 , . . . ,Ψ

T
s

]T
A−10 .

Express zero and sign restrictions on column j of Ψ(L), i.e. the IRFs to shock εj,t as

Zjg(A0,Ψ(L))ej = 0

Sjg(A0,Ψ(L))ej > 0

with appropriate selection matrices Zj and Sj . Vector ej denotes column j of identity matrix In.

The algorithm of Arias et al. (2018) to generate posterior draws of Ψ(L)A−10 under this type of

restrictions proceeds by (i) drawing from the posterior (B(L),Σ) to obtain Ψ(L) and A∗; (ii) obtain-

ing uninformative draws of Q that satisfy the zero restrictions Zjg(A∗Ψ(L)); and (iii) applying an

importance sampling step to account for volume changes due to zero restrictions; and (iv) inspecting

the validity of sign restrictions.

With the DC regression, the draw of α uniquely defines q1 = A−1∗ α, while the remaining columns of

Q remain unspecified. The DC restriction may therefore be combined with zero and sign restrictions

on shocks εt,j for j > 1. Note that we draw α from a non-degenerate distribution. Hence, there is

no volume reduction, and the importance sampling step by Arias et al. (2018) is not required. The

SC posterior on shock θt is implemented from a rejection sampling step. Hence, it may be combined

with sign restrictions on shocks εt,j for all j and zero restrictions for j > 1.
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Annex B.3: Monte Carlo Simulations

For the simulations presented in section 3 of the main text, we set

B1 = ρ

[
cos(ω) sin(ψ)
− sin(ψ) cos(ψ)

]
A−10 =

[
1.0 0.3
0.3 1.0

]1/2 [
cos(a) sin(a)
− sin(a) cos(a)

]

with ρ = 0.9, ψ = 0.2, and a = π/4. Matrix B1 is subject to complex conjugate roots and generates

cyclical fluctuations of length of 2π/ψ = 32 quarters. Matrix A−10 is constructed from the Choleski

decomposition times a rotation matrix, AT0 = A∗Q, such that residuals ut = A−10 ε+t , are subject to

a correlation of 0.3 for zero ζt, while the rotation matrix ensures that the initial response of xt,1 to

θt is sufficiently large.

To calibrate the number of policy shocks m, we let σν = 0.01 and calibrate the expected value of

the size of the policy innovation, ζ, to achieve the desired expected number of policy interventions

m. This give values of ζ = 1.64 for m = 10 and ζ = 1.28 for m = 20. As regards simulation (4),

since varxt,i) = (1− ρ2)−1Σε, with ω = 0.5, the lagged term x2,t−1 explains about 70% of the total

variance of ζ∗t . The results presented are based on 1000 draws of the DGP (9) and, for each draw of

the DGP, 200 draws of the posterior or bootstrap confidence bounds, respectively. The number of

observations is set to T = 200.

The Bayesian VARs are explained in the main text. In all cases, we employ an uninformative Jeffrey

prior for the reduced form VAR and assume 1 lag in estimation, mirroring the data generating

process. For models BVζ and BV we skip mean adjustment Γzt and draw from the proxy regression

ζt = aTut + ξt using an uninformative Normal-Gamma prior and assuming a normal distribution of

residual ξt. In implementing the frequentist proxy VAR, we rely on the code of Mertens and Montiel

Olea (2018), which offers the bootstraps of Jentsch and Lunsford (2016) and Montiel Olea et al.

(2021) for proxy VARs with sparse instruments. The two bootstraps give very similar results, and

we report only the latter. For local projections we estimate the equation x1,t+h = aTxt +γhzt +u1,t

and obtain the impulse response to the policy innovation at horizon h directly from coefficient γh.

We obtain uncertainty bands from a standard bootstrap.

Table B.1 shows the results for an alternative data generating process, which assumes unconditional

normality of the generated innovations. In terms of equations (9), this is achieved by setting ζt ≡ 0.

For strong identification we construct instrument zt by randomly selecting m = 10 observations from

the largest 40 realisations of innovations ηt out of T = 200 observations. For weak identification,

we select them from the m = 100 largest realisations. This implies that innovations associated with

the instrument are, on average smaller in absolute size in the second case. In either case, however,

instrument zt displays perfect sign concordance with the true innovations ηt for the m selected

periods.
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The results differ in two important ways from those presented in the main text. First, models DSC

and SC using the sign concordance prior with λ = 1 now provide the most efficient estimates. This

suggests that the SC prior is highly efficient under perfect sign concordance. However, model SC

continues over-estimating the width of uncertainty bands as it is based on set identification only,

whereas model DSC maintains a weak tendency of underestimating them. Second, the Montiel Olea

et al. (2021) bootstrap for the frequentist proxy VAR now provides accurate confidence bounds.

Table B.1: Monte Carlo Simulations (alternative DGP)

BVζ BV DC DSC SC pV LP

(1) Weak RMSE .12 .13 .13 .10 .09 .15 .21
Bias -.04 -.06 -.06 -.01 -.01 -.05 .05
IQD .39 .42 .41 .32 .27 .44 .67
UB .41 .52 .51 .23 .25 .55 .97
Coverage .79 .85 .84 .65 .71 .85 .89

(2) Strong RMSE .09 .09 .09 .09 .07 .09 .12
Bias -.02 -.02 -.04 -.04 -.02 -.03 .06
IQD .29 .29 .29 .27 .22 .30 .35
UB .26 .27 .28 .29 .53 .32 .48
Coverage .72 .74 .75 .76 .98 .78 .85

The table shows statistics of standardised IRFs at horizons h = 0 for the alternative data generating
process assuming unconditional normality of the residuals as described in the current section of the
Supplement. The models are as in the main text. RMSE and Bias are the root mean squared error
of the estimate and its difference to the true IRF, respectively. IQD is the [0.1, 0.9] interquantile
difference of the distribution of the central estimate measuring its true uncertainty, while UB is the
corresponding estimated uncertainty bands. Coverage stands for the share of draws where the true
IRF lies within the estimated bands with a correct value of .80.

Annex B.4: Banking Deregulation Index

Our banking deregulation index is an unweighted average of two sub-indices related to inter-state and

intra-state deregulation. Each sub-index takes values of zero (full regulation) to one (no regulation)

with intermittent values equal to the GDP shares (as of 1980) of states which had introduced

respective deregulation. Hence, the index equals zero before 1970, the beginning of deregulation,

and one after 1996.

As discussed by Kroszner and Strahan (1999, 2014), deregulation was a gradual process that consol-

idated the fragmented banking system in multiple ways. States differed in the timing of when they

allowed banks from other states to operate in their jurisdiction and in how many other states were

given access. Another source of variation was the timing of the removal of intra-state branching
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restrictions that prohibited banks from expanding their branch network within a state.18

Figure B.1: Banking Deregulation Index
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We use the indices provided by Mian et al. (2017), which reflect the start of the deregulation process.

For example, the year of inter-state banking deregulation is defined as the first year in which a state

allowed out-of-state banks to open a branch. These decisions were based on bilateral arrangements

between states until the Riegle-Neal Act of 1994 resulted in the general deregulation of U.S. inter-

state banking. Kroszner and Strahan (1999, 2014) conclude that the process of deregulation was

largely exogenous to macroeconomic conditions as it was driven by a combination of technological

change and shifts in private and public interest. For instance, the speed of deregulation is highly

correlated with republican versus democratic state government.

18See Kroszner, R.S. and P. E. Strahan. (1999). What Drives Deregulation? Economics and
Politics of the Relaxation of Bank Branching Restrictions. The Quarterly Journal of Economics
114(4):1452-1467 and Kroszner, R.S. and P. E. Strahan. (2014). Regulation and Deregulation of the
U.S. Banking Industry: Causes, Consequences, and Implications for the Future. In N. L. Rose (ed.).
NBER Book Economic Regulation and Its Reform: What Have We Learned?: 485-543. University
of Chicago Press.
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Figure C.1: Monte Carlo Simulations
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The black solid line shows the true IRF. The blue solid and dotted lines show the central estimate

and its [.10, .90] quantiles as provided by the various methods. The shaded area shows the [.10,

.90] quantiles of confidence bounds. See Table 1 for the definition of the simulations. The models

and the calculation of central estimates and confidence bounds are explained in the main text.
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Figure C.2: Standardized IRFs for DC and SC Restrictions

0 8 16 24 32
-1.0

 0.5

G
D

P

Capital Requirements

0 8 16 24 32
-1.0

 0.5
Underwriting Standards

0 8 16 24 32
-1.0

 0.5
Capital Requirements

0 8 16 24 32
-1.0

 0.5
Underwriting Standards

0 8 16 24 32
-2.0

 2.0

C
P

I

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-1.0

 1.0

F
F

 R
at

e

0 8 16 24 32
-1.0

 1.0

0 8 16 24 32
-1.0

 1.0

0 8 16 24 32
-1.0

 1.0

0 8 16 24 32
-0.1

 0.2

B
A

A
 S

pr
ea

d

0 8 16 24 32
-0.1

 0.2

0 8 16 24 32
-0.1

 0.2

0 8 16 24 32
-0.1

 0.2

0 8 16 24 32
-2.0

 2.0

C
P

 C
re

di
t

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-2.0

 2.0

H
H

 C
re

di
t

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-2.0

 2.0

0 8 16 24 32
-4.0

 2.0

H
ou

se
 P

ric
es

0 8 16 24 32
-4.0

 2.0

0 8 16 24 32
-4.0

 2.0

0 8 16 24 32
-4.0

 2.0

Discriminant Analysis Sign Concordance

The graphs show the impulse responses to a 1% shock based on either DC or SC restrictions.

The solid line shows the median and bounds show [0.05; 0.95] and [0.16; 0.84] quantiles of

IRFs. The dotted line shows the main estimate from the DSC restriction.
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Figure C.3: IRFs Scaled by the Average Policy Impact

0 8 16 24 32
-0.8

 0.2

G
D

P

Capital Requirements

0 8 16 24 32
-0.8

 0.2
Underwriting Standards

0 8 16 24 32
-0.8

 0.2
Capital Requirements

0 8 16 24 32
-0.8

 0.2
Underwriting Standards

0 8 16 24 32
-1.5

 1.0

C
P

I

0 8 16 24 32
-1.5

 1.0

0 8 16 24 32
-1.5

 1.0

0 8 16 24 32
-1.5

 1.0

0 8 16 24 32
-0.6

 0.3

F
F

 R
at

e

0 8 16 24 32
-0.6

 0.3

0 8 16 24 32
-0.6

 0.3

0 8 16 24 32
-0.6

 0.3

0 8 16 24 32
-0.1

 0.2

B
A

A
 S

pr
ea

d

0 8 16 24 32
-0.1

 0.2

0 8 16 24 32
-0.1

 0.2

0 8 16 24 32
-0.1

 0.2

0 8 16 24 32
-2.0

 1.0

C
P

 C
re

di
t

0 8 16 24 32
-2.0

 1.0

0 8 16 24 32
-2.0

 1.0

0 8 16 24 32
-2.0

 1.0

0 8 16 24 32
-2.0

 1.0

H
H

 C
re

di
t

0 8 16 24 32
-2.0

 1.0

0 8 16 24 32
-2.0

 1.0

0 8 16 24 32
-2.0

 1.0

0 8 16 24 32
-4.0

 2.0

H
ou

se
 P

ric
es

0 8 16 24 32
-4.0

 2.0

0 8 16 24 32
-4.0

 2.0

0 8 16 24 32
-4.0

 2.0

Discriminant Analysis Sign Concordance

The graphs show the IRFs scaled the impact of average policy shock of size based on either

DC or SC restrictions. See Figure C.3 for further explanations.
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Figure C.4: Robustness Check against Lagged Impacts
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The graphs show standardised IRFs from the robustness checks against lagged innovations

discussed in section 4.3. The left hand graph shows estimates with lags drawn for individual

periods from a uniform distribution (model DSC) and using the SC prior, the right hand

one for fixed lags from 1 to 4 (model DC). The latter corresponds to the results shown in

Table 4. See Figure C.3 for further explanations.
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Figure C.5: Standardized IRFs from Alternative Estimates
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The left hand graph shows estimates including the deregulation index. The right hand graph

shows estimates from a VAR including 4 lags. See Figure C.3 for further explanations.
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Figure C.6: Standardised IRFs from Standard Proxy VARs
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The graphs show IRFs from a standard Bayesian proxy VAR and from a frequentist proxy

VAR with confidence bands based on the bootstrap by Montiel Olea et al. (2021). See

Figure C.3 for further explanations.
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