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Abstract

We propose a regime-switching approach to deal with the lower bound on nominal

interest rates in dynamic term structure modelling. In the �lower bound regime�, the short

term rate is expected to remain constant at levels close to the e¤ective lower bound; in

the �normal regime�, the short rate interacts with other economic variables in a standard

way. State-dependent regime switching probabilities ensure that the likelihood of being in

the lower bound regime increases as short rates fall closer to zero. A key advantage of

this approach is to capture the gradualism of the monetary policy normalization process

following a lower bound episode. The possibility to return to the lower bound regime

continues exerting an in�uence in the early phases of normalization, pulling expected future

rates downwards. We apply our model to U.S. data and show that it captures key properties

of yields at the lower bound. In spite of its heavier parameterization, the regime-switching

model displays a competitive out-of-sample forecasting performance. It can also be used

to gauge the risk of a return to the lower bound regime in the future. As of mid-2018, it

provides a more benign assessment than alternative measures.

Keywords: zero lower bound; term premia; term structure of interest rates; monetary

policy rate expectations; regime switches.
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Non‐technical summary 

After the global financial crisis of 2008‐09, short‐term nominal interest rates have reached levels 

close to their lower bound (henceforth, LB) in many advanced countries. This experience has taught 

us two lessons. The first one is that recessions accompanied by binding LB experiences are much 

more prolonged than normal recessions. The second lesson is that once the economy exits from the 

LB period, the pace of monetary policy normalisation is very slow. 

The aforementioned two lessons suggest that a regime‐switching approach may be well‐suited to 

model interest rates at, and away from, the lower bound. This is the approach adopted in this paper. 

Yield dynamics are explicitly described as a function of two possible policy‐induced stochastic 

regimes: a normal regime and a LB regime. In the normal regime, interest rates are an affine 

function of a Gaussian state vector, which follows an unrestricted VAR process. In the LB regime, 

interest rates are again an affine function of a Gaussian state vector, but the short‐term rate is 

restricted to be a white noise process around a constant, low level. Stochastic regime changes are 

assumed to occur with probabilities that are state‐dependent, i.e. such that a switch to the LB 

regime is increasingly more likely, the closer short term rates fall towards zero. 

Consistently with the aforementioned two lessons, the model explicitly allows for different macro 

and yield dynamics in the LB period compared to normal situations. It can also account for very 

gradual recoveries from the LB: as soon as the system switches to the LB regime, the short‐term rate 

is expected to remain at low levels as long as the economy stays in this regime.  

We apply a version of the model to monthly U.S. data and show that it captures well the evolution of 

short and long‐term interest rates over the past 20 years. The estimated regimes are in line with 

intuition. They suggest that the U.S. economy was in the LB regime with a high probability from 

October 2008 until the end of 2015 and started moving towards the normal regime thereafter. In 

spite of its richer parameterization, the regime‐switching model is also competitive with more 

parsimonious alternatives in out‐of‐sample forecasts. 

The nonlinearity of our framework has implications for the decomposition of yields into expectations 

and risk premia. When the short rate is at the LB and this regime is persistent, future short rates are 

expected to persistently remain at the lower bound. As a result, even if observed 10‐year yields are 

low, estimated risk premia remain positive, which is arguably a plausible feature. By contrast, 

models with a single regime tend to generate mean reversion in short rates and, as a result, they 

suggest that risk premia are negative when observed long‐term yields are low.  

We employ our model to gauge the risk of a return to the LB regime in the U.S.. We specifically 

measure the probability to switch back to the lower bound over the next three years. At the end of 

our estimation sample, in mid‐2018, this probability is around 5%, which represents a more benign 

assessment than suggested from alternative measures. 
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1 Introduction

After the global �nancial crisis of 2008-09, short-term nominal interest rates reached levels

close to their lower bound (henceforth, LB) in many advanced economies �see Figure 1 for

the case of the United States.1 Over time, two new lessons have been learned from these LB

experiences.

The �rst lesson is that recessions accompanied by binding LB episodes are much more

prolonged than normal recessions. Interest rates (and in�ation rates) are more persistently

low after a recession in which they reach the LB, than after normal recessions. One-month

money market rates remained below the 25 basis points level for 7 years in the United States

before the Federal Reserve (Fed) began raising rates again. This evidence appears consistent

with theoretical arguments suggesting that periods when policy rates reach their LB result

in deeper recessions, and that such period are characterized by di¤erent economic dynamics

compared to normal situations � i.e. recessions where policy interest rates can be reduced

without constraints (e.g. Eggertsson and Woodford, 2003). As a result, a yield curve model

should ideally allow for the law of motion of the state variables to change when interest rates

are close to the LB.

The second lesson is that once the economy exits from the LB period, the pace of monetary

policy normalization is very slow. After seven years at the LB range of 0� 0:25%, the FOMC

raised the target range for the federal funds rate by 25 basis points in December 2015. It

took the Committee one more year to raise it by another 25 basis points, and two years after

the initial rate hike the target range was only 125 basis points above the LB. By contrast,

historical US tightening cycles in the two decades before the �nancial crisis had on average

seen the target rate rise by 256 basis points within one year of the initial rate hike. A well-

speci�ed term structure model should be able to capture such di¤erences in the speed of policy

normalization in normal times and following an LB episode, and it should also be able to

account for the ensuing di¤erences in longer-term yields.

The aforementioned two lessons suggest that a regime-switching approach may be well-

suited to model yields at, and away from, the lower bound. This is the approach we adopt

1The exact level of the LB is in principle unknown. In theory, a negative interest rate level on short-term
bonds would give rise to an arbitrage opportunity �going short in the bond yielding a negative interest rate
and long in cash. The zero level should therefore represent a lower bound for interest rates. In practice, storage
costs have discouraged banks from transforming central bank reserves into banknotes. In many constituencies,
including the euro area, Sweden and Switzerland, key policy interest rates have became negative and have
brought down with them short-term market rates.
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Figure 1: US one-month interest rate
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in this paper. Yield dynamics are explicitly described as a function of two possible policy-

induced stochastic regimes: a normal regime and a LB regime. In the normal regime, interest

rates are an a¢ ne function of a Gaussian state vector, which follows an unrestricted VAR

process. In the LB regime, interest rates are again an a¢ ne function of a Gaussian state

vector, but the short-term rate is assumed to be a white noise process around the constant,

lower bound level. We �nally assume that stochastic regime changes occur with probabilities

that are state-dependent. We model the state-dependence to imply that a switch to the LB

regime, conditional on being in the normal regime, is increasingly more likely as short-term

rates move lower and lower.

Consistent with the �rst new lesson, the model explicitly allows for di¤erent macro and

yield dynamics in the LB period compared to normal situations. The model can also account

for the very high persistence of LB episodes. As soon as the system is in the LB regime, the

short-term policy rate will be expected to remain at low levels for as long as the economy stays

in this regime. If this regime is persistent, longer-term yields will also remain low, re�ecting

such expectations. Moreover, by letting the probability that the economy switches from the

normal regime to the LB regime depend on the level of interest rates, the model can capture

the slow normalization of policy rates following an LB episode, in line with the second lesson.

Speci�cally, with rates still low after exiting the LB regime, the model assigns a high probability
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to a possible switch back to the LB regime. With this probability remaining high, interest rates

rise slowly and yields on longer-dated bonds remain low to re�ect it. As a result, the model is

able to account for very slow recoveries from the LB, including �secular stagnation�scenarios

of extremely persistent low growth, low in�ation, and low nominal interest rates (Summers,

2013).

Of course, the added �exibility of the regime-switching model comes at a cost. Compared

to an a¢ ne speci�cation, it leads to an increase in the size of the parameter vector to be

estimated. This can be problematic in standard applications to data from recent decades,

where only one LB episode is observed. We mitigate this problem in two ways. First, we

rely on a model in which the state vector is made up solely of observable variables. Second,

we specify the functional dependence of regime-switching probabilities on the state vector on

economically motivated, a priori grounds, rather than estimating its features from the data.

To illustrate our approach, we apply a version of the model on monthly U.S. data where

the state vector consists of the term spread, a measure of curvature, and the short rate. More-

over, we allow two macro variables, in�ation and industrial production growth, to in�uence

expectations about future short-term interest rates as well as term premia. We show that

this simple speci�cation �ts the data well. Across six nominal bond maturities, the estimated

standard deviation of the measurement error is on average 8 basis points. We also show that,

in forecasting, the model e¤ectively rules out the possibility of rates deeply below the lower

bound.

Our estimated regimes are in line with intuition. They suggest that the U.S. economy was

in the LB regime with a high probability from October 2008 until the end of 2015, and that it

started moving towards the normal regime thereafter. At the end of our estimation sample, in

April 2018, the probability of being in the normal regime is estimated to be essentially 100%.

Nonetheless, forecasts beyond April 2018 indicate that the small probability to switch back

to the LB regime continues exerting an in�uence on model dynamics, pulling expected future

yields downwards.

The nonlinearity of our framework has implications for the decomposition of yields into

expectations and risk premia. When the short rate is at the lower bound but yields remain

in positive territory, expectations of low future short rates can be the result of the model�s

nonlinearity and need not be associated with deeply negative term premia, as is often the case

in a¢ ne models. Our estimated risk premia on 10-year yields do in fact remain positive for most
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of the LB period and its aftermath. This is arguably a plausible feature. Nonlinear macro

models, capable of �tting relevant conditional covariances when the lower bound constraint

binds, suggest that nominal term premia at long maturities should be smaller, but only under

peculiar speci�cations would they turn negative (Nakata and Tanaka, 2016; Gourio and Ngo,

2016).

Regime-switching probabilities also have an e¤ect on the interpretation of risk premia. At

any point in time, risk premia do not only compensate investors for the risk of unexpected

changes in the state of the economy along a linear path, but also for regime-switching risk.

Regime-shift risk premia are estimated to be near-zero before the Great Recession, but at times

during the lower bound period and its aftermath they rise to up to 25 basis points in absolute

monthly excess return terms. Speci�cally, regime-shift risk premia tend to be elevated at times

when the probability to transition from the current regime to the other is high.

To assess the performance of our model, we compare our results to those of a shadow rate

model, which is a popular alternative to deal with the LB in term-structure modelling. Two

key di¤erences between the two approaches emerge when interest rates leave the LB (�lift-o¤�).

First, above the LB, the shadow rate model becomes a Gaussian a¢ ne model and it forecasts

that yields return to their long-run mean at the same speed as in normal times. In contrast,

the regime-switching model can remain consistent with a much slower normalization of interest

rates, if the probability to return to the LB is non-negligible after lift-o¤. Second, the shadow

rate model imposes identical steady state levels of the underlying term structure factors in LB

episodes and in normal times. This means that the implied long-run interest rate level will

be very sensitive to the sample used to estimate the model parameters. In particular, if the

sample is relatively short and includes a prolonged LB spell, the model�s steady state interest

rate level will be implausibly low. Instead, if the researcher estimates the shadow rate model

on pre-LB data only, then the model will imply a very quick return to high pre-LB average

levels once lift-o¤ takes place, which is clearly inconsistent with the U.S. experience in recent

years. By contrast, our regime-switching approach allows for di¤erent long-run mean levels in

LB and in normal times. This, combined with the aforementioned non-negligible probability

to switch back to the LB following a lower bound episode, makes the regime-switching model

able to capture the gradualism of monetary policy normalization towards a reasonable long-run

level.
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These key di¤erences are important to understand our forecasting results. If the shadow

rate model is estimated on pre-crisis data only, its forecasting performance is not very good.

After lift-o¤, all interest rates are expected to quickly return to pre-crisis unconditional means,

which are implausibly high after a prolonged period at the LB. If instead the shadow rate

model is estimated on the full sample, which includes a long stretch of near-zero interest rates,

then its near-term forecasting performance improves as the estimated unconditional mean of

the short rate drops. But its forecasting performance over longer horizons su¤ers from the fact

that this estimated long-run mean tends to be unrealistically low. The advantage of the regime-

switching model is that it can accommodate both a relatively high mean of interest rates in the

normal, pre-crisis regime, and a lower future mean of interest rates if the probability to return

to the LB regime remains non-negligible. We show that, in spite of its richer parameterization,

our regime-switching model is also competitive with the shadow rate model in out-of-sample

forecasts.

Our paper is related to the applied literature studying the term structure of interest rates

at the LB. This literature has developed over the past decade. The shadow rate model has

proven to be the most popular empirical approach (see Bom�m, 2003, Ueno et al., 2006, Ichiue

and Ueno, 2007, Kim and Singleton, 2012, and Christensen and Rudebusch, 2016, for estimates

using Japanese yield data; Krippner, 2013, Ichiue and Ueno, 2013, Priebsch, 2013, and Wu and

Xia, 2016, for applications to U.S. data). Compared to standard single-regime a¢ ne models, it

has two advantages (see also the discussion in Christensen and Rudebusch, 2016): it rules out

negative interest rates (or rates below some other speci�ed lower bound); and it can account

for the observed reduction in the volatility of shorter-term yields when the policy rate is at the

LB (see Swanson and Williams, 2014). The shadow rate model is also relatively parsimonious;

away from the LB, it boils down to the standard a¢ ne formulation, which has been studied in

an extensive literature.

A paper closer to our approach is Koeda (2013), which adopts a regime-switching set-up

in an application to Japan�s experience with the lower bound. Nevertheless, some important

di¤erences characterize our approaches. First, Koeda (2013) assumes that the state dynamics

under the risk-neutral measure are identical in the normal and the LB regimes, while we relax

this assumption. Second, Koeda (2013) assumes that the regimes are observable not only to

market participants, but also to the econometrician �an assumption we do not impose.
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Our paper is organized as follows. Section 2 presents a simple structural model to mo-

tivate our analysis. We then move on to specify our term structure model with normal and

lower-bound regimes in Section 3. We derive approximate bond-pricing equations and then

characterize the model likelihood. An application of the model to U.S. data is described in

Section 4. This section describes the �tting performance of the model and derives its impli-

cations for risk premia and for forecasting. The results of a comparison to the shadow rate

model are also presented here. Section 5 concludes.

2 Motivation

In the applied literature two main approaches have been used to deal with the lower bound

constraint: the shadow rate model and a quadratic term structure model with parameter re-

strictions. Kim and Singleton (2012) provide an early assessment of these approaches based

on the early lower bound experience in Japan and show that they can both overcome the lim-

itations of a¢ ne models. More recently, Andreasen and Meldrum (2018) revisit the issue and

conclude that the two approaches have comparable bene�ts, but also shortcomings. Speci�-

cally, the �time-series dynamics of yields during the ZLB period change, and simply modifying

the functional form of the short rate does not fully capture this change.�

The intuition explaining the change in the time-series dynamics of yields at the LB can be

obtained from macro-economic models. For illustrative purposes, consider a simpli�ed version

of the model used by Svensson (1997)

�t = �xt + �t�1; (1)

xt = �
1



(it � Et�t+1 � rt) ; (2)

rt+1 = �rt + �"t+1; (3)

where �t is in�ation, xt is a notion of output gap, it is the short-term nominal interest rate

and rt is an exogenous variable (which could be interpreted as the natural interest rate of the

model). The �rst equation is a type of Phillips curve and the second equation shows that the

output gap will contract when the real interest rate it � Et�t+1 is above the level rt and it

will expand when the real interest rate is below rt. The parameters �, 
 and � are such that

0 < � < 1, 
 > 0 and 0 < � < 1. The model is then closed by a Taylor-type rule which reacts
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to in�ation, subject to the zero bound constraint i � 0, or

it = max (��t; 0) (4)

for � > 1 (the so-called Taylor principle).

Following Guerrieri and Iacoviello (2015) and restricting attention to the case when the LB

is only expected to bind for at most one period, Appendix A1 shows that the solution of this

model can be written as

it = Bj

24 �t�1

rt

35 ;
and 24 �t

rt+1

35 =Mj

24 �t�1

rt

35+
24 0

�

35 "t+1;
where Bj and Mj assume di¤erent values depending on whether the ZLB is binding (j = L)

or not (j = N). Speci�cally, when it � 0 the solution is such that

BN =

�
1
2
�
�

�

 + �� �

q
(
 + ��)2 � 4�


�
��

1
2
(
+��)���� 1

2

p
(
+��)2�4�


�
;

MN �

264 1
2
1
�

�

 + �� �

q
(
 + ��)2 � 4�


�
�

1
2
(
+��)���� 1

2

p
(
+��)2�4�


0 �

375 ;
while if the zero bound is binding for only one period

BL =
h
0 0

i
;

ML �

264 2



���+
p
(
+��)2�4�


�
1
2
(
+��)���� 1

2

p
(
+��)2�4�



+���
p
(
+��)2�4�



���+
p
(
+��)2�4�


0 �

375 :
This simple model is obviously highly stylized, but it is su¢ cient to highlight two key

properties of a world where the nominal interest rate can occasionally hit the e¤ective lower

bound constraint.

The �rst property is obvious: once the interest rate hits its lower bound (zero in this simple

model) the standard relationship between interest rates and the state variables no longer

holds. In terms of this stylized model, BN turns into BL, which is a row of zeros. This is the
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property imposed by shadow rate models, i.e. models which explicitly replace the standard

a¢ ne relationship between the interest rate and the state vector (it = BN [�t�1; rt]
0 in our

simple model) with it = max
�
BN [�t�1; rt]

0 ; 0
�
.

The second property is also intuitively clear, but it is not typically taken into account in

term structure applications. Not only does the ZLB constraint prevent nominal rates from

becoming negative, but it also changes the law of motion of the endogenous state variables.

Since the nominal interest rate is not allowed to fall as much as it should according to the

Taylor rule, monetary policy is unable to stimulate output and in�ation. As a result, the

evolution of the economy in reaction to shocks is in general di¤erent at the zero bound: the law

of motion of the state vector changes from MN to ML. The law of motion of the state vector

would only remain unchanged in the special case where all state variables are exogenous, which

is not empirically plausible.

The illustrative example above suggests that, based on economic intuition, one would want

to allow for a model of yields at the e¤ective lower bound such that not only are yields prevented

from falling deeply below the bound, but the dynamics of the yield factors are also allowed to

change depending on whether the lower bound is binding or not. This is the main motivation

for the approach we adopt in this paper.

A more empirical motivation for this assumption can also be directly obtained from recent

U.S. data. Following up on the conclusion in Andreasen and Meldrum (2018), Table 1 reports

autocorrelation coe¢ cients for the short rate and yields before and after the LB period. Since

the fed funds rate hit the 0�0.25% range at the end of 2008, the cut-o¤point is set to December

2008. The sample corresponds to the one we will use in our empirical application of the

model: January 1987 to April 2018. For each of the two periods, the table reports the sample

correlation coe¢ cient plus lower and upper bounds for a 95% con�dence interval for each

coe¢ cient. The table shows that all yields, and especially those with maturity up to one year,

were extremely persistent in the pre-LB period. The autocorrelation coe¢ cients are above

0.99 for short-term yields and above 0.98 for yields up to 10-year. Once the LB sets in, yield

persistence falls markedly, in a number of cases below 0.9. Only long-term yields remain more

persistent, but nevertheless their serial correlation falls in a statistically signi�cant manner to

levels around 0.94. The fall is less striking, but present, also for the yield curve slope de�ned as

the di¤erence between the 10-year yield and the 1-month rate. Its autocorrelation coe¢ cient

falls from 0.97 to 0.94.
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To summarize, theoretical considerations and a descriptive analysis of the data suggest

that a model of yields when short-term rates are close to their lower bound should incorporate

two features. The �rst one, which is widely recognized, is to account for the fact that further

reductions in short-term rates are low-probability events. The second feature is to allow the

law of motion of the factors driving yields to change. We propose a regime-switching model

which incorporates these two features.

3 A regime-switching model of the lower bound

Our regime-switching model captures the nonlinearity of economic dynamics at the lower bound

in a �exible fashion. Compared with a Gaussian model, it can explicitly allow for changes in

the law of motion of the factors driving the yield curve when the short-term rate hits the

LB. Compared with a shadow rate model, it relaxes the assumption that the state vector is

expected to follow the same dynamic evolution, independently of whether the economy is at

the LB or not. This assumption is likely to become more overly restrictive, the longer the

length of the LB period �see also Svensson (2014).

Our starting point is a VAR model, under the objective probability measure P, for the state

vector Xt

Xt = KPj
X;0 +K

Pj
X;1Xt�1 +�

j
X"

P
X;t; (5)

where the state at time t is st = j; where either j = N (for the Normal regime) or j = L (for

the LB regime). In line with the vast literature on the term structure of interest rates, the

state vector is assumed to consist of three yield factors, namely the curvature (c), slope (s),

and short rate (r) of the term structure, i.e. Xt = [ct; st; rt]
0 : The formulation in (5) can be

easily generalized to accommodate additional discrete regimes. Moreover, the Xt vector can

be expanded to include lags of its variables. Thus this formulation does not restrict us to work

with a VAR(1) speci�cation. Note that the vector KPj
X;0 determining the conditional long-run

mean of the state vector, the feedback matrix KPj
X;1 and the variance parameters �

j
X are all

indexed by the prevailing regime.

We can identify the LB regime by assuming that all entries in the row and column of KPL
X;1

corresponding to rt are equal to zero when the economy is at the LB (this corresponds to the

last row and column, since we order the variables in xt such that the short-term rate rt is the

last element of the state vector). This implies that, in the LB regime, the short-term rate does
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not a¤ect the other variables of the system and is itself an i.i.d. variable around a constant

mean. We also assume that, at the LB, the short rate is not a¤ected by shocks to the other

equations. It follows that, conditional on remaining in the LB state, the law of motion of the

short rate can be written as

rt+1 = �Lr + �
L
r "
r
t+1

where �Lr is its conditional mean and �
L
r is a scalar. In contrast, K

PN
X;1; including the elements

corresponding to the short rate, is unrestricted in normal times.

The model is complemented by a short-rate equation of the form

rt = �0 + �
0
xXt (6)

where �0 = 0 and �x is a vector of zeros, with the exception of a 1 (loading on the short rate)

in the last position. Note that �0 and �x are regime-independent, but that di¤erences in the

mean short rate between regimes can be accommodated by KPj
X;0.

Following Dai, Singleton and Yang (2007, henceforth DSY), assume �nally for the stochastic

discount factor (SDF),Mt;t+1; that

logMt+1 = �rt � �t;t+1 �
1

2
	0t	t �	0t"t+1 (7)

	jt =  j0 +  
j
1Xt (8)

�t;t+1 = log 
j;kt ; (9)

where 	jt are regime-dependent market prices of factor risk and �t;t+1 are market prices of

regime shift risk. A non-zero 	jt captures risk premia that compensate investors for unpre-

dictable variation in the state variables, while a non-zero �t;t+1 captures premia required for

being exposed to unpredictable regime shifts.

The risk-neutral state dynamics are given by

Xt = KQj
X;0 +K

Qj
X;1Xt�1 +�

j
X"

Q
X;t; (10)

where KQj
X;0 = KPj

X;0 � �
j
X 

j
0 and K

Qj
X;1 = KPj

X;1 � �
j
X 

j
1:

Note that DSY assumes that the market prices of factor risk are such as to produce a regime-

independent feedback matrix under Q, i.e. KQL
X;1 = KQN

X;1 . This assumption is unappealing for

ECB Working Paper Series No 2320 / October 2019 12



our application, because it would imply that bonds are priced as if the risk-neutral state

vector dynamics in the lower bound regime were identical to those in the normal regime. We

therefore allow for state-dependent matrices KQj
X;1. A disadvantage with this approach is that

closed-form solutions for arbitrage-free bond prices are unavailable. To overcome this, we rely

on the approximate bond pricing approach of Bansal and Zhou (2002).

Speci�cally, denote bond maturity by n and the price of an n-period bond at t by Pt;n; and

note that the no arbitrage condition Pt;n = Et [Mt;t+1Pt+1;n�1] can be rewritten as

1 = Et

�
Mt;t+1

Pt+1;n�1
Pt;n

�
:

Appendix A2 shows that the bond price can be written as

Pt;n = exp
�
�Ajn �BjnXt

�
;

for

Ajn =
SX
k=1

�Qjk
�
�j0 +A

k
n�1 +B

k
n�1K

Qj
X;0 �

1

2
Bkn�1�

j
X�

j
X

�
Bkn�1

�0�
;

Bjn =
SX
k=1

�Qjk
�
�0x +B

k
n�1K

Qj
X;1

�
;

starting from

Aj1 = �0;

Bj1 = �0x:

It follows that yields are given by yt;n = 1
nA

j
n +

1
nB

j
nXt.

We also need to specify the regime-switching probabilities under both P and Q. Denote the

transition probabilities from regime st = j to regime st+1 = k as Pr [st+1 = kjst = j] = �Pjkt ,

for 0 � �Pjkt � 1 and
PS
k=0 �

Pjk = 1. In order to keep bond pricing somewhat tractable,

we follow the existing asset pricing literature and assume that the Q-probabilities, �Qjk; are

constant over time. As for the P-probabilities, �Pjkt ; they can in general be time-varying

and state-dependent. More speci�cally, we model them using the cumulative probability of a
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multivariate normal distribution:

�P;NLt =

Z �NLx 1q
(2�)2

���NX �� exp
�
�1
2

�
X � �Nt+1

�0
�N

�1
X

�
X � �Nt+1

��
dX;

where �Nt+1 is the next-period conditional expectation of X, given that the economy is currently

in state N; and where �NLx is a vector of critical levels, or thresholds, that indicate at which

point the sensitivity of the regime-switching probability is at its highest. In other words,

these thresholds represent levels of the state variables where investors would start to become

concerned that the economy would hit the LB. The probability to leave the lower bound, �P;LNt ,

is modelled symmetrically, for thresholds �LNx .

Finally, in order to link the P and Q transition probabilities, we follow DSY and assume

that

�Q;NL =
�P;NLt


NLt
;

i.e. that the market prices of regime-switching risk are such that scaling the P-probabilities by

the risk price results in the Q-probability. As shown by DSY, if regime shift risk is not priced,

then the transition probabilities under P and Q would coincide.

3.1 Pricing consistency and JSZ form

Joslin, Singleton and Zhu (2011, JSZ henceforth) and Hamilton and Wu (2012) highlight an

identi�cation problem in a¢ ne term structure models, which arises from the property that the

state vector Xt is often speci�ed in terms of linear combinations of yields. In this section we

brie�y highlight the problem in the context of our regime-switching model.

The problem has to do with the prices of risk parameters  0
j and  1

j and it is particularly

clear when the state vector is composed of yields only. As an illustrative example, consider the

simple case where the state vector consists of a slope factor st, given by the di¤erence between

a n-month maturity yield yt;n and the short rate rt, and the short rate itself, so that in this

simpli�ed case Xt = [st; rt]
0.

To further simplify this illustrative example, consider the single-regime a¢ ne case. Given

state Xt and short rate rt = [0; 1]Xt; bond prices will follow a recursion such that Pt;k =

exp (�Ak �BkXt) for maturity k. It is then immediately clear that estimation must be

carried out under an additional constraint requiring that the slope factor st = yt;n � rt is

ECB Working Paper Series No 2320 / October 2019 14



consistent with the pricing parameters in An and Bn. In this example, the constraints are

yt;n =
1
n

�
An +Bn x

f
t

�
= st + rt, or 1

nAn = 0 and Bn = [n; n]. This, in turn, implies non-

linear constraints on the parameters governing the risk-neutral dynamics of X:

In the regime-switching case, the constraints must correspondingly ensure that bond prices

are consistent with the state vector for both states N and L, i.e. for ALn , A
N
n , B

L
n and B

N
n ,

which in turn implies non-linear restrictions on KPj
X;0 and K

Pj
X;1:

JSZ show that the restrictions can be applied much more directly and more e¢ ciently in

the a¢ ne case, by skillfully exploiting the Jordan decomposition. We apply this approach

in each regime to ensure pricing consistency in our model. Speci�cally, given the regime-

dependent P-dynamics (5), Q-dynamics (10) and the short-rate equation (6), the state variables

are de�ned, in the language of JSZ, as �portfolios of yields�with weights W , i.e. Xt =Wyt:
2

Under the assumption that these yield portfolios are priced perfectly by the model, they can

be viewed as observable pricing factors. In this case, JSZ show that the Q distribution of

Xt can be fully characterized by the parameters �Qj =
�
kQj1 ; �Qj ;�jX

�
, where kQj1 is a

parameter that is proportional to rQ1, the risk-neutral long-run mean of the short rate in

regime j (under Q-stationarity), �Qj is the vector of eigenvalues of KQj
1 , and �

j
X�

j0
X is the

covariance of innovations to the portfolios of yields. The parameters of the P distribution of

Xt are �Pj =
�
KPj
X;0;K

Pj
X;1;�

j
X

�
:

3.2 Unspanned macro factors

Thus far, we have assumed that the dynamics of yields in our regime-switching model can be

adequately captured by a small number of yield factors, namely level, slope, and curvature.

This is in line with a vast literature on the term structure of interest rates, which, starting with

Litterman and Scheinkman (1991), shows that these three yield factors (or, alternatively, the

�rst three principal components (PCs) of yields) explain almost all of the variation in yields.

However, Joslin, Priebsch and Singleton (2014, JPS henceforth) show that while a small

number of yield factors can capture yield dynamics well, macroeconomic factors can neverthe-

less play an important role for bond risk premia and expected future interest rates. Since these

macro factors are not spanned by the current yield curve, JPS denote them as �unspanned�

macro factors. These macro factors therefore represent risk factors that are distinct from yield

2 In our case, with the factors speci�ed as curvature, slope and short rate, we choose W to select weights
on individual yields that correspond to our de�nition of curvature, slope and short rate; see Section 4 for more
details.
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level, slope and curvature or yield PCs. Speci�cally, unspanned macro factors can a¤ect risk

premia without directly impacting yields (beyond their e¤ect on the yield factors themselves)

because, in the bond market pricing kernel, the market prices of yield factor risks are allowed

to depend not only on the yield factors, but also on the unspanned macro factors.

Within our setting, it seems plausible that key macroeconomic variables, such as in�ation

and economic activity, could potentially play an important role for bond risk premia and

expectations of future short-term interest rates. In fact, investors are likely to be keenly

sensitive to the evolution of such macro variables precisely in periods where the policy rate is

stuck at the lower bound, or when the economy appears to be heading towards the LB. We

therefore adjust our model to allow for unspanned macro risks. Speci�cally, we include CPI

in�ation and industrial production growth as candidates for unspanned macro risk factors.

In terms of modeling the term structure, the inclusion of unspanned macro factors involves

expanding the risk factors in the bond market from the yield factors Xt to Zt = [Xt;Mt] that

includes the macro factors Mt. Moreover, the P-dynamics of Zt are assumed to follow a VAR

where Xt is allowed to depend on Mt and vice versa:

Zt = KPj
Z;0 +K

Pj
Z;1Zt�1 +�

j
Z"
P
Z;t; (11)

or 24 Xt

Mt

35 =
24 KPj

X;0

KPj
M;0

35+
24 KPj

XX;1 KPj
XM;1

KPj
MX;1 KPj

MM;1

3524 Xt�1

Mt�1

35+
24 �jXX �jXM

�jMX �jMM

3524 "PX;t

"PM;t

35 :
As before, we allow the dynamics to depend on the regime j. Under Q, the yield factors Xt

evolve according to (10), while the short-rate dynamics remain as in (6). Given the pricing

kernel (7), the market prices of risk are now implicitly given by the di¤erence in the drift of

Xt in the P-dynamics of Zt in (11) and the drift of Xt under Q in (10):

	jt =
�
�jXX

��10@�KPj
X;0 �K

Qj
X;0

�
+
�h

KPj
XX;1 KPj

XM;1

i
�
h
KQj
X;1 0

i�24 Xt�1

Mt�1

351A :

As a result, although only Xt are priced risks, investors�tolerance of these risks is allowed to

depend on both Xt and on the macro factors Mt:
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3.3 Estimation

When estimating the model, we will include yields not only for the maturities needed to

construct our observable yield factors. We assume that the additional yields are observed

with some random pricing errors, and that the errors are normally distributed with covariance

matrix �e�0e: In this setting, JSZ show that the conditional density of the collection of yields

y in our sample is given by the product of the P density of the observable yield factors X

(and observable unspanned macro factors, if any) times the conditional density of the pricing

errors. This latter density is determined by the cross-sectional relationship among the yields,

and is therefore only a function of the Q dynamics of X (and �e). As a result, the P density

and the Q density are fully separate, which means that the conditional mean of X under P

can be estimated separately in a �rst step, while the pricing error density, which depends

on the conditional mean of X under Q and on the short-rate dynamics, can be estimated

subsequently.3

In a single-regime case with state vector Zt that includes both observable yield factors and

unspanned macro factors, the conditional density of (Zt; yt) is (see JPS)

f (Zt; yt j Zt�1; �) = f (yt j Zt; Zt�1; �)� f (Zt j Zt�1; �)

= f
�
yt j Xt; kQ1; �Q;�Z ;�e

�
� f

�
Zt j Zt�1;KP

Z;0;K
P
Z;1;�Z

�
:

The states Z as well as the measurement errors are assumed to be conditionally Gaussian.

In a regime-switching setting, the joint probability f (Zt; yt; st�1 = j; st = k j Zt�1; �) can

be rewritten as

f (Zt; yt; st�1 = j; st = k j Zt�1; �) = f (Zt; yt j Zt�1; st�1 = j; st = k; �)�f (st�1 = j; st = k j Zt�1) :

If we de�ne the probability of regime st�1 = j given Zt�1 asQ
j
t�1, i.e. Q

j
t�1 � f (st�1 = j j Zt�1),

it follows that

f (st�1 = j; st = k j Zt�1) = f (st�1 = j j Zt�1)� f (st = k j Zt�1; st�1 = j)

� Qjt�1�
Pjk
t�1;

3The only link between the two densities is the covariance of the innovations, but as emphazised by JSZ, this
covariance does not a¤ect the ML extimates of the conditional factor mean.
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and

f (Zt; yt; st�1 = j; st = k j Zt�1; �) = f (Zt; yt j Zt�1; st�1 = j; st = k; �)�Qjt�1�
Pjk
t�1;

so that the likelihood in period t can be obtained by integrating out the discrete states

f (Zt; yt j Zt�1; �) =
X
k=N;L

X
j=N;L

f (Zt; yt j Zt�1; st�1 = j; st = k; �)�Qjt�1�
Pjk
t�1:

The sample log-likelihood is then

logL =
1

T � 1

T�1X
t=0

log f (Zt; yt j Zt�1; �) :

Denoting the updated Qjt�1 as Q
k
t � f (st = k j Zt) ; we thus have

Qkt =

X
j

f (Zt; yt j Zt�1; st�1 = j; st = k; �)�Qjt�1�
Pjk
t�1

f (Zt; yt j Zt�1; �)
:

4 An application to U.S. data

We test the performance of our regime-switching model in an application to U.S. data.

As mentioned above, the state vector is completely observable and includes three yield

factors: a curvature factor ct, de�ned as the sum of the 1-month nominal rate and the 10-year

yield minus twice the 3-year yield; a slope factor st, de�ned as the spread between the 10-year

and 1-month rate; and the 1-month nominal interest rate rt. The state vector also includes

two unspanned macro factors: CPI in�ation and industrial production growth, both de�ned in

terms of annual log-di¤erences. We estimate the model using six additional maturities apart

from the ones used to construct the yield factors: 3 and 6 months; 1, 2, 5 and 7 years. All

the data is sampled at the monthly frequency (end-of-month values). The sample period runs

from January 1987 to April 2018.

Given that the sample period is relatively short and that presumably few regime switches

occurred in the data, we adopt two simplifying assumptions.

First, we pre-estimate the P-parameters for the two regimes under the assumption that

we can identify time periods when the economy was highly likely to have been in the normal
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Figure 2: Transition probability �NL
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regime or in the lower bound regime. Speci�cally, we assume that the system was in the

normal regime before June 2007 and estimate a VAR model on the state variables over this

period. We then assume that the LB regime prevailed from end-December 2008 until October

2015 and reestimate the state vector VAR over this period. This yields parameter estimates

for KPN
Z;0 ;K

PN
Z;1 ;�

N
Z ;K

PL
Z;0;K

PL
Z;1 and �

LN
Z : We keep these parameters �xed when estimating the

remaining ones.

Second, we assume that the transition probability from N to L, �P;NLt ; is only a function of

the short-term rate. This implies, intuitively, that the likelihood to switch to the lower bound

regime is higher, the lower the level of the short-term rate. Speci�cally, we set

�P;NLt =

Z �r 1

�Nr

q
(2�)2

exp

0@�1
2

 
r � �N;rt+1

�Nr

!21A dr;

where �N;rt+1 is the next-period conditional expectation of r, given that the economy is currently

in state N; and �r
N is the standard deviation of r in state N . In this case, the threshold �r

could be seen as representing the rate at which the transition probability is most sensitive

to changes in the short-term interest rate. Figure 2 provides a stylized illustration of the

transition probability to switch from N to L as a function of the short rate. For simplicity, we

also assume symmetry in the probabilities to switch regime, so that �t
P;LN = 1� �t

P;NL.
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Figure 3: Log-likelihood as a function of �r
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Given these two simplifying assumptions, we proceed to estimate the remaining parameters

of our model. Speci�cally, we jointly estimate kQj1 ; �Qj ;�jX for j = N;L; as well as �e and

the transition probabilities �Q;NN and �Q;LL. We further simplify the estimation problem by

assuming that �e is diagonal and that the diagonal elements are identical.

Given our short sample period and the very few regime switches within it, we are unlikely

to be able to accurately estimate �r as a free parameter. We therefore implement a grid-search,

whereby we �x �r at di¤erent values within an interval between 0 and 100 basis points and

estimate the free parameters for each value of �r. Figure 3 displays the (negative of the) log-

likelihood values obtained against the various �r values. The highest log-likelihood value is

attained for �r = 45 basis points, which we therefore use as our threshold for the remainder of

our analysis.

Table 2 reports the parameter values that maximize the likelihood function. The common

standard deviations of the yield measurement errors is around 8 basis points, indicating that

the model is able to �t yields well. This is con�rmed by Figure 4, which displays actual and

�tted values of bond yields across various maturities. The lower right-hand panel shows that

the 10y-yield is �tted perfectly by construction.
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Figure 4: Actual and �tted yields
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One notable feature of the parameter vector is the di¤erent steady state values conditional

on each of the two regimes. In the lower bound regime, the steady state short rate is more

than 4 percentage points lower, at 0.14 percent, than in the normal regime (4.47 percent). The

slope is around 130 basis points higher in the L regime, at 2.48% versus 1.16% percent, and

the curvature factor is around 60 basis points higher (1 percent vs 39 basis points in the N

regime). The macro factors also display important steady-state di¤erences across the regimes.

The long-run mean of in�ation in the N regime is 2.74%, whereas it is 1.09% in the L regime.

And steady state industrial production growth in the N regime is 2.67%, but only 1.09% in the

L regime. These estimates show that the model dynamics imply a substantially lower long-run

growth rate and steady-state in�ation far below the Fed�s target, when the economy is in the

lower bound regime.

Dynamics in the N regime are much more persistent than in the L regime. The largest

eigenvalue of the KPN
Z;1 matrix is 0.987 compared to 0.948 for K

PL
Z;1. Four of the eigenvalues of
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Figure 5: Actual and model short rate
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KPN
Z;1 are above 0.9 compared to two eigenvalues of K

PL
Z;1. All in all, factor dynamics are less

strongly attracted by their conditional long-run mean in the L regime. Consistent with the

descriptive statistics of Section 2, yield movements are also less persistent in the L regime.

Figure 5 shows actual and �tted values of the short-term interest rate separately in the

two regimes and for the full model. The �gure highlights that the Gaussian model would not

provide a terrible �t of the short-term interest rate over the binding lower bound period. For

given N -regime parameters, the short-term rate would only dip into mildly negative territory.

Hence, �tting errors over the period 2009-2016 would be small, albeit highly persistent (see

the left panel). By contrast, the ultra-low policy rate period can be better captured by the

L-regime parameters. As highlighted by the middle panel in the �gure, however, the L regime

quickly becomes inconsistent with the data, once policy rates are above the level consistent

with KPL
Z;0. The right panel in �gure 5 shows that the regime switching model e¤ectively

combines the dynamics of the N and L regimes to ensure that the evolution of the short rate

is consistent with the data over the whole sample period.

Figure 6 illustrates the model�s ability to ensure that nominal interest rates do not attain

deeply negative values. It shows the in-sample forecast distribution (90% con�dence bands) of

the 3-month interest rate in December 2011, a time when the economy is in the lower bound

regime with a probability close to one. Going forward, the probability of moving to the normal
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Figure 6: 3-month interest rate forecast as of end-2011
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regime is expected to slowly rise over time. Consequently, interest rates are slowly expected

to increase too. Nevertheless, the forecast distribution is wide, and near-zero values remain

possible for the entire horizon. However, the forecast distribution e¤ectively rules out values

signi�cantly below zero.

4.1 Inference on the regimes and implications for risk premia

Figure 7 reports the �ltered probability of the economy being in the normal regime. The

probability remained very close to one until late 2008, then it quickly dropped to zero in

October 2008, two months before the Fed established a target range for the federal funds

rate of 0 to 1/4 percent. The probability of being in the normal regime registered some

�uctuations in subsequent years, but generally stayed very low until 2013, at the time of

the taper tantrum, when it temporarily spiked above 50%. Finally, the probability increased

sharply again in November 2015, a month ahead of the FOMC�s decision to begin raising the

target range for the federal funds rate from nearly zero. Nevertheless, the probability thereafter

dipped signi�cantly below one a number of times over the next few months. This is arguably

consistent with Fed communication after the initial hike, which indicated that the FOMC

expected economic conditions to evolve in a manner consistent with only gradual increases in
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Figure 7: Filtered N -regime probability
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interest rates. By early 2017, after the target range had been raised three times, the probability

of being in the normal regime had increased more decisively to its pre-crisis levels.

Our model is also informative with regard to whether investors require compensation for

being exposed to regime shift risk. We investigate this issue by examining one-period ahead

expected excess returns conditional on assuming that factor risk is not priced. In other words,

we set the market prices of factor risk (	jt ) to zero, so that K
Qj
X;0 = KPj

X;0 and K
Qj
X;1 = KPj

X;1; and

examine how model-implied expected excess returns behave over time. As shown in Appendix

2, any remaining non-zero expected excess returns in this scenario must (apart from a negligible

Jensen�s inequality term) be due to regime shift risk being priced, i.e. non-zero �t;t+1.

As shown in Figure 8, the results from this exercise indicate that regime shift risk premia

(RS premia) are typically close to zero, but that they at times can be non-negligible. In

particular, RS premia are essentially zero when the P probability to transition from the current

regime to the other regime is low. This is the case, for example, up until late 2008 when the

economy was in the normal regime and �P;NL was tiny. The same goes for late 2008-2010

or so, when the economy was in the L regime (shaded area) and �P;LN was close to zero.4

The premium becomes more sizeable, however, in situations where these conditions no longer

hold. Take, for example, late 2015 when the economy had just switched from L to N; but

4Recall, �P;LN = 1� �P;NL by construction.
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Figure 8: Regime-shift risk premium (monthly return) and P transition probability
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the probability to switch back to L was high. At this point, the left panel shows that the

regime-shift premium on short bonds (1-year) reached 0.25% in monthly excess return terms.

Because the probability to switch back is so high, short-term bonds price in a high likelihood

that the expected average short rate will be very low over the near term. As a result, the main

risk that holders of short-term bonds face is that the economy actually does not switch, even if

�P;NL is high, and that the yield will end up rising as a result. Consequently, investors demand

a positive premium to be exposed to this risk. As the probability to switch to L progressively

drops in subsequent months, the bond yield will increasingly re�ect expectations of a higher

average interest rate, and the risk of a negative surprise (i.e. an unexpected failure to switch

back to L) will drop, and with it the RS risk premium.

What about longer-term bonds? The right panel of Figure 8 shows that the regime-shift

premium was negative for 5-year bonds after the economy had switched to the normal regime

in late 2015. We surmise that this is because, while a high likelihood of switching back to L

results in lower short-term interest rates, over longer horizons this e¤ect dissipates. As a result,

long-term bonds only partially price in the high near-term probability to switch to L; and yields

are comparably higher than for short bonds. Consequently, the main �risk�for holders of long

bonds is that the switch back to L is much more persistent than expected, so that long yields
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would drop signi�cantly. This would clearly be bene�cial to holders of long-term bonds, and

the regime-shift premium is therefore negative. Again, as the probability to switch from N to

L drops in the course of 2016, this e¤ect is gradually reversed and the premium rises towards

zero (it very brie�y becomes positive in 2017 as the model deems the economy to temporarily

have entered the L regime).

All in all, these results suggest that regime-shift premia can be non-negligible around times

when the probability to transition to another state is high and investors become particularly

concerned (or exuberant) about the risk of a possible change in regime. Regime-shift premia

are not a quantitatively crucial factor to explain yield dynamics over the time period we

analyze, but they of course contribute at times. Compared to the standard premia required as

compensation for changes in the factors within a given regime, regime-shift premia are much

more volatile and can therefore account for some high-frequency movements in yields.

We also perform a standard decomposition of yields between an expectations-hypothesis

(EH) component, de�ned as the average expected short-term interest rate over the maturity of

the bond, and a risk premium component. Our results suggest that �uctuations in EH yields

explain most of the variation of actual yields for most maturities in the early 2000s, while

�uctuations in risk premia are the main driving factor for observed yields during the period

when the economy is in the lower bound regime.5

To understand the impact of di¤erent regimes on the decomposition of observed yields,

it is instructive to compare total risk premia in our model with those obtained through an

a¢ ne speci�cation. We perform this comparison for 10-year premia in Figure 9, relying on

a commonly used benchmark, i.e. the model by Adrian, Crump and Moench (2013, ACM

henceforth).

In spite of the di¤erent speci�cations, the two models deliver estimates of risk premia that

are quite similar to each other over the period until 2014. However, noticeable di¤erences

emerge after �lift-o¤�. The non-zero probability to switch back to the LB regime continues

exerting an in�uence on yield dynamics in our model. It implies that expected future short

rates are lower than in an a¢ ne speci�cation. As a result, the regime-switching model produces

higher risk premia than the ACM model �notably risk premia that are not deeply negative.

Our estimated risk premia on 10-year yields do in fact remain positive for almost the entire

sample period.

5These results are available on request from the authors.
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Figure 9: 10-year yield risk premia in the RS model and in ACM
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While negative term premia are theoretically possible, positive term premia on long-term

bonds are arguably more plausible from the perspective of a structural model. A few recent

nonlinear macro models have shown that they are capable of �tting relevant conditional co-

variances when the lower bound constraint binds. Even if such models are not estimated, they

suggest that nominal term premia at long maturities should on average be lower when short

rates are at the lower bound, but they should mostly remain positive (Nakata and Tanaka,

2016; Gourio and Ngo, 2016). The intuition for negative term premia comes from the in�ation

premium component. Nominal bonds are a hedge when the main driver of economic develop-

ments are demand shocks (which is arguably the case at the e¤ective lower bound). In response

to demand shocks, adverse (recession) states are associated with de�ation, hence surprisingly

high real bond returns. However, Nakata and Tanaka (2016) point out that an implication

of the lower bound constraint is to reduce to near-zero levels the sensitivity to shocks of the

short-term rate. As a result, the pressure towards negative term premia tends to be small.

Moreover, the nominal term premium does not only include a compensation for in�ation risk.

Longer-term nominal bonds are also subject to duration risk. Compared to a shorter-term
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nominal bond �which is also a hedge against de�ation risk �they expose investors to the risk

of an unexpected policy tightening which would lead to capital losses.

4.2 Forecasting implications

We have argued that the regime-switching model provides sensible estimates of risk premia.

However this model includes many parameters, notably more parameters than shadow rate

models. There is an obvious risk of overparameterization. As a speci�cation test, this section

presents results of an out-of-sample forecasting exercise. More speci�cally, we �rst compare

forecasts generated by our model to two versions of the shadow rate model at a speci�c point

in time. This comparison highlights a particular advantage of the regime switching approach:

it does not force us to take a stance ex ante on the future long-run level of interest rates.

In a second step, we run an out-of-sample forecasting horse race between our model to two

alternatives: the random walk and the shadow rate model. The comparison suggests that, in

spite of its less parsimonious speci�cation, our model has competitive forecasting properties.

4.2.1 Implications for the long run

We start with a comparison of interest rate forecast paths at a speci�c point in time. For

the shadow rate model, we rely on the speci�cation in Wu and Xia (2016, WX henceforth),

which uses forward rates (rather than yields) in estimation. All forecasts are out-of-sample,

in the sense that we only use data up to mid-2017 to estimate model parameters.6 We focus

on forecasts generated at mid-2017, which is an interesting point in time, because the Fed

had raised the fed funds target range four times by then, and markets were pricing in further

increases going forward.

Note that the choice of the estimation sample is of crucial importance for shadow rate

models. WX estimate their model on a sample in which interest rates were at the lower bound

for a signi�cant portion of the sample period. As a result, the model interprets this as an

indication that the long-run mean of yields is very low, and the parameter estimates re�ect

this low level. From a forecasting perspective, this implies that short-term rates need not

increase much after lift-o¤ to reach their low unconditional mean.
6For the WX model, we use the Matlab code available on Cynthia Wu�s webpage

https://sites.google.com/site/jingcynthiawu/.
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By contrast, in their implementation of a shadow rate term structure model, Bauer and

Rudebusch (2016) estimate an a¢ ne model over the pre-2008 period and then complement it

with a shadow rate speci�cation without re-estimating the parameter values for the lower bound

period. This approach is very e¢ cient and illustrates a crucial advantage of the shadow rate

model: it is very parsimonious, as it requires no additional parameters than an a¢ ne model.

The Bauer and Rudebusch (2016) approach also ensures that the long-run mean of interest

rates is consistent with pre-crisis values. The paper shows that this approach is not problematic

for the model�s ability to �t yields during the lower bound period. When forecasting yields after

lift-o¤, however, this model will have the same properties as a standard a¢ ne model. More

speci�cally, interest rates will need to increase to higher levels as quickly as after a normal

recession to reach their unconditional pre-LB mean.

To illustrate these properties of shadow rate models and contrast them with those of the

regime-switching model, Figure 10 reports interest rate forecasts over a horizon of up to 10

years for 3-month and 10-year yields as of end-June 2017. Apart from the regime-switching

model, denoted by �RS�, we show forecasts based on two versions of the Wu and Xia (2016)

implementation of the shadow-rate model: a restricted version, denoted by �restricted SR�,

where the parameter values are �xed at their pre-crisis estimates (i.e. based on the period

January 1990 - December 2007), and an unrestricted version, denoted by �unrestricted SR�,

where all parameters are estimated up until the forecast date.

Based on the regime-switching model estimates, the probability of being in the normal

regime (not shown in the �gure) is forecast to fall slowly initially from the near-1 values of

April 2018, reaching a trough of around 0.85% after 2 years, and then increase very slowly over

subsequent years. At the end of the forecast horizon, in 2028, the probability remains close to

0.9. As a result, the model also forecasts a very drawn-out policy normalization process. The

3-month rate rises quite slowly, reaching 2% by early 2020. The mean prediction is that the

short rate will reach values around 2.9% percent in 2028. With the short rate increasing at a

gradual pace, the RS model forecasts that 10-year yields will rise slowly as well, just exceeding

the 4% mark at the end of the forecast horizon in 2028.

By contrast, forecasts from the restricted shadow rate model show that short-term yields

increase very quickly. The 3-month rate is forecasted to exceed 3% within a year, by May 2019,

and then continue to quickly rise to the long-run mean level of 3.65%. On the other hand, the

unrestricted version of the shadow rate model produces a completely di¤erent forecast path. In
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Figure 10: Yield forecasts as of end-June 2017
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this case, following a few months of tiny increases, the 3-month rate is expected to quickly fall

towards its estimated long-run mean level around 0.5%. This value appears to be exceptionally

low by historical standards, albeit perhaps not unreasonable in a potential secular stagnation

scenario. The 10-year yield forecasts re�ect these very di¤erent short-rate paths, with the

restricted shadow-rate model producing long-term yield projections substantially higher than

the regime-switching model, and the unrestricted shadow rate model resulting in a much lower

path.

All in all, the comparison of these forecasts based on the regime-switching and shadow rate

models suggests that the former model can more �exibly capture the special nature of post-

lower bound recoveries. The shadow rate model forces the researcher to specify at the outset

whether the recovery will never be full � consistent with the secular stagnation hypothesis

�or if it will be as fast as those following standard recessions. The regime-switching model

weighs these two scenarios by the regime probabilities, which following a LB episode exhibit a

persistent non-negligible likelihood to switch back to the lower bound.
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4.2.2 Forecasting: a comparison to the shadow rate model

We evaluate the out-of-sample forecasting performance of our regime-switching model relative

to two alternatives: the random walk and the unrestricted shadow rate model.7 The models are

�rst estimated until December 2012 and evaluated over the period January 2013 - April 2018.

For each month within this forecast period, we then update the information set, reestimate

the models, and generate new forecasts.

The root mean squared errors (RMSEs) of yields for selected maturities are presented in

Table 3. Lower RMSE values mean better forecasts, and the best forecast at each horizon

is highlighted in bold. The table displays the well-known di¢ culty of econometric models to

beat the random walk forecast. Especially at the 1-month ahead horizon, the random walk

almost always provides the best forecast over our evaluation period. As the forecast horizon

becomes longer, however, the shadow rate model and the regime-switching model become more

competitive. In particular, the regime-switching model becomes increasingly superior when the

forecast horizon extends towards 2 years and beyond, and for medium-maturity yields.

The RMSEs tell us that, in spite of its heavier parameterization, the regime-switching model

appears to display a competitive forecasting performance. To test this result more formally,

Table 4 presents the results of a Diebold and Mariano (1995) test for equality of forecast

accuracy of the regime-switching and the shadow rate models. Negative values indicate a

superior performance of the regime-switching model. The point results of the test include both

positive and negative values, although a majority are negative. The associated p-values (in

parentheses) indicate that a number of these negative values are statistically signi�cant. In

fact, across all 36 forecast horizons and 9 maturities considered, we observe that in 40 cases

the regime-switching model�s performance is signi�cantly superior at the 10% con�dence level,

while the shadow rate model is statistically superior in 12 cases. Consistently with the RMSFEs

results, the performance of the regime-switching model is particularly strong for medium-term

maturities (3 to 7 years).

Finally, we apply White�s (2000) �reality check� test. This test examines whether the

expected value of the forecast loss of a model is signi�cantly greater than the forecast loss of

a benchmark model. In other words, it tests for superior predictive ability rather than equal

predictive ability.

7We use the unrestricted shadow-rate model as it performs substantially better than the restricted shadow-
rate model in terms of out-of-sample forecasting.
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We implement the test in two ways. First, we take our model as the benchmark and ask

whether any of the two alternatives � the WX shadow rate model or the random walk � is able

to produce forecasts that are signi�cantly superior to our model across all 36 forecast horizons

and each of the 9 bond maturities considered. In 98 out of the 324 cases we can reject the null

hypothesis that the random walk model is not superior to the regime-switching model. These

cases are mostly related to forecasts of bonds with very short maturities (up to 6 months).

For none of the maturities and forecasting horizons we consider can we reject the null that

the shadow rate model is not superior to the regime-switching model. We then turn the null

hypothesis around and test for superior predictive ability of our model vis-à-vis each of the

two alternatives. In 219 out of 324 cases we reject the null against the shadow rate model,

meaning that for most of the combinations of maturities and forecast horizons considered here,

the forecasting performance of our model is signi�cantly better than this benchmark. In 142

cases we also reject the null against the random walk model. Looking at the results in more

detail, we again see that our model is especially competitive at medium-term maturity yields.

To illustrate these properties, Table 5 shows results for a selection of forecast horizons in the

case where we test for superior forecast ability of our regime-switching model.

To summarize, in spite of its heavier parameterization the regime-switching model displays

a competitive forecasting performance.

4.3 The risk of returning to the LB

Given its reasonably good forecasting performance, the regime-switching model can be useful

to gauge the risk of a return to the LB regime at the end of the sample. This variable is

likely to be of interest in the future, due to the persistently low level of all interest rates. It is

particularly interesting in 2019 because of the prolonged nature of the U.S. economic expansion

�see Nakata (2017) or Christensen (2019).

In a standard framework, the probability to hit the LB at some point in the future can be

de�ned based on a simulation of future possible paths of the short-term interest rate, starting at

a given point in time. The LB risk can then be measured as the fraction of the simulated paths

in which the short rate reaches the LB level, say for three consecutive months, as suggested

by Christensen (2019). This approach is followed to construct the yellow line in Figure 11,

which counts the frequency of 3-year-ahead simulated paths in which the short-term interest

rate is below 0.25% at least three months in a row. The resulting LB risk is extremely high
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Figure 11: Probability of a binding ELB in the future
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until early 2017, then it falls rapidly. However, even in mid-2018 the probability to touch the

LB is larger than 10% �a level which appears high enough to be a reason for concern.

An obvious disadvantage of this approach is that it does not distinguish whether the LB

episodes that it captures are persistent. Especially if interest rates remain at relatively low

levels, it is natural to observe an increase in the number of times in which the short rate reaches

the LB. This increased frequency of LB levels, however, need not imply an increased frequency

of a binding LB. The short-term rate could just touch the LB for one quarter and then bounce

back immediately.

Our model provides a natural way to assess the likelihood of a renewed, persistent LB

episode. The LB risk can simply be de�ned as the probability to switch to the LB regime. As

a result, occasional episodes in which the short rate touches the LB would not be counted as

LB episodes. �True�LB episodes would only be episodes when the LB becomes a constraint

and the economy switches to the LB regime.

The other lines in Figure 11 explore the implications of this di¤erent notion of LB risk.

More speci�cally, the blue line measures the probability to switch to the LB in the next quarter.

Given that policy rates are normally adjusted in small steps, this probability remains around

50% in 2016, when the federal funds rate hovers at very low levels. As the stance of monetary
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policy is tightened, however, the probability keeps falling and it becomes essentially zero in

the second half of 2017, as the federal funds rate moves towards the 1% level from below.

Finally, the red line in Figure 11 measures the probability to switch to the LB at some point

over a longer horizon. It counts the average of the 1-step-ahead to 36-step-ahead probabilities

of switching to the LB regime over the next 3 years. Its time pattern is close to the one in

the heuristic measure captured by the yellow line, but its level is lower over the whole period

shown in the �gure. Intuitively, even if occasional dips of the short rate to the LB level remain

possible going forward, the probability that they correspond to a binding LB regime is much

lower. In mid-2018 this is assessed to be below 5%. Its implications are therefore more benign

than those of the heuristic measure.

5 Conclusions

We propose and analyze a dynamic term structure model with stochastic regime switches to

deal with the lower bound on nominal interest rates. We allow for separate laws of motion

for the evolution of the state vector in normal times and at the lower bound. State-dependent

regime switching probabilities ensure that the likelihood of being in the lower bound regime

increases as short rates fall closer to zero. A key advantage of this approach is that it allows

for a very gradual normalization of monetary policy following a lower bound episode.

We apply our model to U.S. data and show that it does well in �tting key properties of

yields at the lower bound. Moreover, after �lift-o¤�, the model is able to capture the slow

pace of monetary policy normalization evident from the recent U.S. experience. In particular,

the possibility to return to the lower bound regime continues exerting an in�uence in the early

phases of normalization, pulling expected future rates downwards.

This mechanism also has implications for term premia. In particular, after exiting the

lower bound, the regime-switching model implies lower average expected short-term interest

rates than standard one-regime a¢ ne term structure model. As a result, the regime-switching

model also implies higher term premia than alternative models, and notably risk premia that

are not deeply negative.

In spite of its relatively heavy parameterization, the regime-switching model displays a

competitive out-of-sample forecasting performance. The model�s ability to account for di¤erent

state dynamics in and out of the lower bound period, coupled with its ability to allow for a

ECB Working Paper Series No 2320 / October 2019 34



high probability to switch back to the lower bound regime after having exited it, contributes

to the model�s reliable forecasting performance. The model also allows for a straightforward

way to gauge the risk of a return to the lower bound regime in the future. In our application to

U.S. data in mid-2018, it provides a more benign assessment than some alternative measures.
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A1 An illustrative model

This section describes in some detail the illustrative model reported in Section 2. Recall the
model equations

�t = �xt + �t�1; (12)

xt = �
1



(it � Et�t+1 � rt) ; (13)

rt+1 = �rt + �"t+1; (14)

it = max (��t; 0) ; (15)

where �t is in�ation, xt is a notion of output gap, it is the short term nominal interest rate
and rt is an exogenous variable. We impose the following parameter restrictions: 0 < � < 1,

 > 0, 0 < � < 1 and � > 1.

To solve the model, start from the case where i > 0 and monetary policy follows the rule
it = ��t. In this case, one can guess that the solution will be linear in the two state variables
rt and �t�1, or

�t = A�rt +B��t�1;

xt = Axrt +Bx�t�1;

it = Airt +Bi�t�1;

for coe¢ cients A�, Ax, Ai, B�, Bx and Bi to be determined.
Use the guesses in equations (12), (13) and (15) and use equation (14) to obtain

(A� � �Ax) rt = (�Bx + 1�B�)�t�1;

[
Ax +Ai �A�B� � (1 +A��)] rt =
�
B2� � 
Bx �Bi

�
�t�1;

(Ai � �A�) rt = (�B� �Bi)�t�1:

These conditions give a system of six equations in the coe¢ cient guesses. Since one equation
is quadratic in Bx, we obtain six solutions:

Bx =
1

2

1

�2

�

 + (�� 2)� �

q
(
 + ��)2 � 4�


�

and
Ax =

1


 + (�� �)� � � (1 + �Bx)
;

A� = �Ax;

B� = 1 + �Bx;

Ai = �A�;

Bi = �B�:
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Note �rst that for Bx to be real we need (2� � 
 � ��)2 � 4�2 (1� �). Assuming � > 0

this requires � > 2
q



� �



� . As a result, the law of motion of the two state variables is
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The eigenvalues of MN are 1

2�

�
�� + 
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q
(�� + 
)2 � 4�


�
and �. Note that both need

to be less than 1 in modulus to ensure a stationary equilibrium. We have already assumed
� < 1. For the other root, this condition requires

(�� + 
)�
q
(�� + 
)2 � 4�
 < 2�:

Solving the associated equation (�� + 
)�
q
(�� + 
)2 � 4�
 = 2� for �, we obtain that

� = 1, so that under our maintained assumption of � > 1 the unique stationary eigenvalue is
1
2�

�
�� + 
 �

q
(�� + 
)2 � 4�


�
.

To summarize, for the case when it > 0 we obtain
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For the ZLB, we rely on the logic in Guerrieri and Iacoviello (2015). More speci�cally,

consider the case where the zero bound only binds in period t, but it is expected not to bind
again in t + 1. In this case, we know that it = 0. This value of the short rate can be used in
the output gap equation, where we can also compute Et�t+1 from the solution for the case in
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which the ZLB does not bind to compute

xt =
1

2

1

�


�

 + �� �

q
(
 + ��)2 � 4�


�
�t +

1




1
2 (
 + ��)�

1
2

q
(
 + ��)2 � 4�


1
2 (
 + ��)� ���

1
2

q
(
 + ��)2 � 4�


rt:

This equation can be used in the in�ation equation to �nally obtain

�t =
�

1
2 (
 + ��)� ���

1
2

q
(
 + ��)2 � 4�



 + �� �
q
(
 + ��)2 � 4�



 � �� +
q
(
 + ��)2 � 4�


rt+
2

1� ��

 +

1



q
(
 + ��)2 � 4�


�t�1:

Hence for the period in which the ZLB does bind we have

MZ =

264 2



���+
p
(
+��)2�4�


�
1
2
(
+��)���� 1

2

p
(
+��)2�4�



+���
p
(
+��)2�4�



���+
p
(
+��)2�4�


0 �

375 :
As shown Guerrieri and Iacoviello (2015), the same logic can be applied if the ZLB is expected
to bind for many periods.

A2 Bond pricing using a log-linear approximation

Postulate that bond prices are exponentially a¢ ne in Xt

Pt;n = exp
�
�Ajn �BjnXt

�
:

Using the expression for bond prices and the stochastic discount factor, the no-arbitrage con-
dition can be rewritten as

1 = Et

264exp
0B@ ��j0 � �0xXt � 1

2

�
	jt

�0
	jt � �

j;k
t �Akn�1 +A

j
n �Bkn�1K

Qj
X;0 �

��
	jt

�0
+Bkn�1�

j

�
"t+1

�
�
Bkn�1K

Qj
X;1 �B

j
n

�
Xt

1CA
375 :

Note that the independence between normal and regime-switching shocks implies that

Et

�
exp

�
�
��
	jt

�0
+Bkn�1�

j

�
"t+1

��
=

SX
k=1

�Pjkt exp

�
1

2

�
	jt

�0
	jt +B

k
n�1�

j	jt +
1

2
Bkn�1�

j�j
�
Bkn�1

�0�
;

so that the no-arbitrage condition becomes

1 =

SX
k=1

�Pjkt exp

�
��j0 � �0xXt � �

j;k
t �Akn�1 +Ajn �Bkn�1K

Qj
X;0 +

1

2
Bkn�1�

j�j
�
Bkn�1

�0
�
�
Bkn�1K

Qj
X;1 �B

j
n

�
Xt

�
:
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Finally use the assumption i.e. �j;kt = log 
j;kt = log
�Pjkt

�Qjk
to obtain

1 =
SX
k=1

�Qjk exp

�
��j0 � �0xXt �Akn�1 +Ajn �Bkn�1K

Qj
X;0 +

1

2
Bkn�1�

j�j
�
Bkn�1

�0
�
�
Bkn�1K

Qj
X;1 �B

j
n

�
Xt

�
:

At this point, take a �rst order approximation. Note that the right hand side must be 1 in
steady state. The exponential can therefore be approximated around 0, using exp z ' 1 + z.
It follows that

0 =
SX
k=1

�Qjk
�
��j0 � �0xXt �Akn�1 +Ajn �Bkn�1K

Qj
X;0 +

1

2
Bkn�1�
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�
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�0
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�
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j
n

�
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�
:

These equations are satis�ed for all maturities as long as the A and B matrices follow the
recursions

Ajn =
SX
k=1

�Qjk
�
�j0 +A

k
n�1 +B

k
n�1K

Qj
X;0 �

1

2
Bkn�1�

j�j
�
Bkn�1

�0�
;

Bjn =

SX
k=1

�Qjk
�
�0x +B

k
n�1K

Qj
X;1

�
;

starting from

Aj1 = �j0;

B1 = �0x:

To compute the accuracy of the above approximation, we compare it to the exact solution
for a few maturities. Given the bond pricing equation

1 = Et

�
Mt;t+1

Bt+1;n�1
Bt;n

�

and the our assumptions on �0, �0x, Mt+1, �
j
t and �t;t+1, n-period bonds can be written exactly

as

Bt;n =
X
k=S

�Qst=j;st+1=k
X
l=S

�Qst+1=k;st+2=l:::
X
z=S

�Qst+n=y;st+n+1=z exp
�
�Aj;k;l;m;:::;zn �Bj;k;l;m;:::;zn Xt

�
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1

2
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�
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�0
and

Bk;l;m;:::;zn = �0x +B
k;l;m;:::;y
n�1 KQj

X;1
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The above expression involves 2n�1 terms for a bond of maturity n, so it quickly becomes
computationally intractable. We can however compute it quickly for bonds of up to 18-month
maturity. The approximation error implied by the log-linear approximation for these maturities
is always smaller than one tenth of a basis point.

A3 Regime shift risk premia

Recall, for Zt = [Xt;Mt]
0, the P-dynamics of the model can be written as

24 Xt

Mt

35 =
24 KPj

X;0

KPj
M;0

35+
24 KPj

XX;1 KPj
XM;1

KPj
MX;1 KPj

MM;1

3524 Xt�1

Mt�1

35+
24 �jXX �jXM

�jMX �jMM

3524 "PX;t

"PM;t

35 :
Note that in this setting, with unspanned factors, the expectation of the priced factors X is

EPt [Xt+1] = KPj
X;0 +

h
KPj
XX;1 KPj

XM;1

i
Zt

� KPj
X;0 +K

Pj
X;1Zt:

Next, re-write the Q-dynamics of X in the following way:

[Xt] = KQj
X;0 +

h
KQj
X;1 0

i
Zt�1 +�

j
X"

Q
X;t

� KQj
X;0 +

~KQj
X;1Zt�1 +�

j
X"

Q
X;t:

The conditional expectation of X under Q is then

EQt [Xt+1] = KQj
X;0 +

~KQj
X;1Zt:

Conditional on the current regime st = j; the expected return on an n-period bond P jt;n is

EPt [log (Pt+1;n�1) j st = j]� log
�
P jt;n

�
:

The current bond price is
P jt;n = exp

�
�Ajn �BjnXt

�
;
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so the log price is

log
�
P jt;n

�
= logEQt

h
exp

�
�rjt

�
Pt+1;n�1 j st = j

i
= �rjt + log

 
SX
k=1

�QjkEQt

h
P kt+1;n�1 j st = j

i!

= �rjt + log
 

SX
k=1

�Qjk exp
�
�Akn�1

�
EQt

h
exp

�
�Bkn�1Xt+1

�
j st = j

i!

= �rjt + log
 

SX
k=1

�Qjk exp
�
�Akn�1

�
exp

�
�Bkn�1

�
KQj
X;0 +

~KQj
X;1Zt

��
EQt

h
exp

�
�Bkn�1"t+1

�
j st = j

i�
= �rjt + log

 
SX
k=1

�Qjk exp
�
�Akn�1 �Bkn�1

�
KQj
X;0 +

~KQj
X;1Zt

��
exp

�
1

2
Bkn�1�

j�jBk0n�1

�!

= �rjt + log
 

SX
k=1

�Qjk exp

�
�Akn�1 �Bkn�1

�
KQj
X;0 +

~KQj
X;1Zt

�
+
1

2
Bkn�1�

j�jBk0n�1

�!
;

where, for notational simplicity, �j = �jXX : The expected value (P) of the t+ 1 log price is
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The expected excess return is then
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Suppose factor risk is unpriced, 	t = 0; so that K
Qj
X;0 = KPj

X;0 and ~K
Qj
X;1 = KPj

X;1, then, ignoring
the Jensen�s inequality term, we get
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We can use this expression to measure the impact of priced regime shift risk in a world where
factor risk is not priced. Only to the extent that regime shift risk is priced will �Qjk di¤er
from �Pjkt ; resulting in a non-zero xrt;nj	t=0 (apart from a Jensen�s inequality term). To see
this, use the approximation
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and ignore the Jensen�s inequality term to get
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Table 1: US yield autocorrelation coe¢ cients before and during the lower bound period

pre-LB LB

maturity L95 corr U95 L95 corr U95

1m 0.987 0.990 0.992 0.798 0.865 0.910

3m 0.990 0.992 0.994 0.854 0.903 0.936

6m 0.989 0.992 0.994 0.867 0.912 0.942

1y 0.988 0.990 0.993 0.823 0.882 0.922

2y 0.984 0.987 0.990 0.830 0.887 0.925

3y 0.982 0.986 0.989 0.849 0.900 0.934

5y 0.980 0.984 0.988 0.879 0.920 0.947

7y 0.980 0.984 0.988 0.896 0.932 0.955

10y 0.980 0.984 0.988 0.909 0.940 0.961

slope (10y-1m) 0.957 0.966 0.974 0.908 0.939 0.960

Note: pre-LB period is January 1987 - November 2008. L95 and U95 are
lower and upper bounds, respectively, for a 95 per cent con�dence interval
for each coe¢ cient.
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Table 2: Parameter estimates

For the state vector Zt = [Xt;Mt]
0 ; with spanned yield factors Xt = [ct; st; rt]

0 (curvature,
slope, short rate level) and unspanned macro factorsMt = [�t; gt]

0 (CPI in�ation and industrial
production growth), the model is

Zt = KPj
Z;0 +K

Pj
Z;1Zt�1 +�

j
Z"
P
Z;t;

Xt = KQj
X;0 +K

Qj
X;1Xt�1 +�

j
X"

Q
X;t;

rt = �0 + �
0
xXt;

for regimes j = N;L; P transition probabilities �P;jkt ; and Q transition probabilities �Q;jk:
Imperfectly observed yields are subject to random pricing errors with covariance matrix �e�0e;
where �e is diagonal with identical elements �e:The Q distribution of Xt is fully characterized
by the parameters �Qj =

�
kQj1 ; �Qj ;�jX

�
, where kQj1 is proportional to the risk-neutral long-

run mean of the short rate in regime j and �Qj is the vector of eigenvalues of KQj
1 : Figures in

parentheses are asymptotic standard errors.

Panel A: Q parameter estimates

parameter N regime L regime

�Qj1 0:994
(0:026)

1:018
(0:017)

�Qj2 0:897
(0:000)

1:017
(0:021)

�Qj3 0:896
(0:053)

0:984
(0:000)

kQj1 � 100 0:035 0:014

�Q;jk =

k = N k = L

j = N

j = L

264 0:998
(0:053)

1� �Q;NN

1� �Q;LL 0:959
(0:006)

375
�e � 100 = 0:080

(0:069)
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Panel B: P parameter estimates

100 �
�
I � K̂PN

Z;1

��1
K̂PN
Z;0 =

�
0:385
(0:023)

1:160
(0:024)

4:465
(0:020)

2:741
(0:011)

2:671
(0:045)

�0
100 �

�
I � K̂PL

Z;1

��1
K̂PL
Z;0 =

�
1:019
(0:015)

2:475
(0:023)

0:136
(0:005)

1:094
(0:030)

1:086
(0:116)

�0

K̂PN
Z;1 =

266666666666664

0:812
(0:041)

�0:019
(0:026)

�0:010
(0:021)

0:019
(0:032)

0:004
(0:010)

0:191
(0:037)

1:002
(0:023)

0:028
(0:019)

�0:049
(0:029)

�0:028
(0:009)

�0:153
(0:032)

�0:015
(0:020)

0:963
(0:016)

0:042
(0:024)

0:028
(0:007)

0:026
(0:035)

0:031
(0:022)

0:044
(0:018)

0:908
(0:027)

0:007
(0:008)

�0:268
(0:074)

0:136
(0:046)

0:096
(0:037)

�0:208
(0:057)

0:932
(0:017)

377777777777775

K̂PL
Z;1 =

266666666666664

0:858
(0:063)

0:049
(0:037)

0 0:000
(0:027)

0:006
(0:005)

0:137
(0:075)

0:875
(0:044)

0 �0:066
(0:031)

�0:004
(0:006)

0 0 0 0 0

0:127
(0:128)

0:103
(0:075)

0 0:883
(0:054)

0:018
(0:011)

�0:701
(0:333)

0:701
(0:194)

0 0:247
(0:140)

0:971
(0:028)

377777777777775

100 � �N =

266666666666664

0:354
(0:002)

�0:219
(0:001)

0:236
(0:001)

0:061
(0:001)

�0:172
(0:001)

0:203
(0:001)

�0:008
(0:001)

0:002
(0:001)

0:047
(0:001)

0:300
(0:001)

�0:079
(0:002)

�0:023
(0:002)

0:029
(0:002)

�0:028
(0:002)

0:627
(0:006)

377777777777775

100 � �L =

266666666666664

0:206
(0:001)

0:030
(0:001)

0:241
(0:001)

0 0 0:042
(0:000)

0:062
(0:001)

0:110
(0:001)

0 0:397
(0:002)

0:004
(0:002)

0:110
(0:003)

0 0:197
(0:005)

1:064
(0:017)

377777777777775
Note: Figures in parentheses are asymptotic standard errors.
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Table 5: Tests for superior out-of-sample predictive ability of the RS model

SR vs RS

1m rate 1y yield 3y yield 5y yield 10y yield

1 month ahead 0:103 �0:071 0:042 �0:023 0:001

6 months ahead 0:037 0:194 0:292 0:323 0:559

12 months ahead 0:585 0:903 1:002 0:994 0:585

24 months ahead 3:500 2:060 2:194 2:272 1:288

36 months ahead 1:456 0:199 0:607 1:264 1:363

RW vs RS

1m rate 1y yield 3y yield 5y yield 10y yield

1 month ahead �0:013 �0:179 �0:015 �0:004 0:017

6 months ahead �0:076 �0:064 0:092 0:323 0:470

12 months ahead �0:273 0:090 0:307 0:561 0:035

24 months ahead �0:519 0:556 0:371 0:305 �1:319

36 months ahead 2:980 4:815 2:218 0:461 �1:946

The table shows test statistics for superior ability of the regime switching
model ("RS") compared to the WX shadow rate model (top panel, "SR") and
compared to the random walk (bottom panel, "RW"), calculated according to
White�s (2000) "reality check". We use a squared forecast error loss function
when implementing the test. The null hypothesis is that the expected di¤er-
ential between the forecast loss of the benchmark and that of the RS model
is smaller than or equal to zero. Bold �gures denote rejection of the null at
the 10 per cent level, based on p-values generated by the stationary bootstrap
approach, with 50,000 resamples of the loss di¤erential series (using a smooth-
ing parameter of 1/12). The forecast evaluation period is January 2013 - April
2018.
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