The Unequal Gains from Product Innovations: Evidence from the US Retail Sector

Xavier Jaravel, London School of Economics

September 21, 2017

Introduction

- Who benefits from innovation?
 - Income channel: extensive literature on skill-biased technical change [Acemoglu 1998, Goldin and Katz 1998, Autor, Levy and Murnane 2003]
 - Expenditure channel: new products can affect purchasing-power across income groups directly (by targeting specific groups) and indirectly (through competition with existing products)
- This paper investigates the impact of product innovations on inequality through the expenditure channel
 - Theory:
 Shifts in income distribution ⇒ Increased demand for premium products
 ⇒ Shift in direction of product innovations
 - ⇒ Increase in purchasing-power inequality
 - Several empirical tests support this theory, primarily using scanner data in US retail sector
- This has implications for inflation inequality and the price indexation of certain government programs

Introduction

- Who benefits from innovation?
 - Income channel: extensive literature on skill-biased technical change [Acemoglu 1998, Goldin and Katz 1998, Autor, Levy and Murnane 2003]
 - Expenditure channel: new products can affect purchasing-power across income groups directly (by targeting specific groups) and indirectly (through competition with existing products)
- This paper investigates the impact of product innovations on inequality through the expenditure channel
 - ► Theory: Shifts in income distribution ⇒ Increased demand for premium products ⇒ Shift in direction of product innovations

 \Rightarrow Increase in purchasing-power inequality

- Several empirical tests support this theory, primarily using scanner data in US retail sector
- This has implications for inflation inequality and the price indexation of certain government programs

Introduction

- Who benefits from innovation?
 - Income channel: extensive literature on skill-biased technical change [Acemoglu 1998, Goldin and Katz 1998, Autor, Levy and Murnane 2003]
 - Expenditure channel: new products can affect purchasing-power across income groups directly (by targeting specific groups) and indirectly (through competition with existing products)
- This paper investigates the impact of product innovations on inequality through the expenditure channel
 - ► Theory:
 Shifts in income distribution ⇒ Increased demand for premium products
 ⇒ Shift in direction of product innovations

 \Rightarrow Increase in purchasing-power inequality

- Several empirical tests support this theory, primarily using scanner data in US retail sector
- This has implications for inflation inequality and the price indexation of certain government programs

Motivating Example: Cost of Detergent (per 100 Loads) More

Motivating Example: Cost of Detergent (per 100 Loads) More

Motivating Example: Cost of Detergent (per 100 Loads) More

Motivating Example: Cost of Detergent (per 100 Loads)

Motivating Example: Cost of Detergent (per 100 Loads)

Main Findings

- In retail sector (2004-2015), higher-income households experienced a faster increase in product variety and lower inflation on continued products
 - Annual inflation was 65 basis points lower for households earning above \$100k vs. below \$30k
- This was largely due to the supply response to changes in demand induced by shifts in the income distribution
 - Research design in two steps:
 - ★ Identify effect of demand on supply using changes in age and income distributions over time as demand shifters
 - ★ Apply point estimates to changes in demand induced by shifts in US income distribution
 - Accounts for over 80% of inflation difference
 - Simple model rationalizes evidence (endogenous entry and markups)

Related Literatures

- Literature on innovation and inequality
 - Factor-augmenting technical change: Goldin and Katz (1998), Acemoglu (1998, 2002, 2007), Krusell, Ohanian, Rios-Rull and Violante (2000), Greenwood and Yorukoglu (1997), Galor and Moav (2000), Garicano and Rossi (2004)
 - Sector-augmenting technical change: Acemoglu and Linn (2004), Acemoglu, Aghion, Bursztyn and Hemous (2012), Boppart and Weiss (2013) and Comin, Lashkari and Mestieri (2016)
 - ▶ Product cycle: Schumpeter (1942), Vernon (1966), and Matsuyama (2002)
 - Contribution: show theoretically and empirically the implications of endogenous innovations across product space for inequality

Literature on inflation inequality

- Extensive literature investigating inflation experiences of different household groups: Amble and Stewart (1994), Gamer, Johnson and Kokoski (1996) and Hobjin and Lagakos (2003), Murphy and Garvey (2004), Chiru (2005), McGranahan and Paulson (2005)
- Recent work measuring inflation inequality using scanner data: Broda and Romalis (2009), Argente and Lee (2016), Kaplan and Schulhofer-Wohl (2016)
- Contribution: show long-term trend of inflation inequality in scanner data (not business-cycle phenomenon) and importance of aggregation bias

Related Literatures

- Literature on innovation and inequality
 - Factor-augmenting technical change: Goldin and Katz (1998), Acemoglu (1998, 2002, 2007), Krusell, Ohanian, Rios-Rull and Violante (2000), Greenwood and Yorukoglu (1997), Galor and Moav (2000), Garicano and Rossi (2004)
 - Sector-augmenting technical change: Acemoglu and Linn (2004), Acemoglu, Aghion, Bursztyn and Hemous (2012), Boppart and Weiss (2013) and Comin, Lashkari and Mestieri (2016)
 - ▶ Product cycle: Schumpeter (1942), Vernon (1966), and Matsuyama (2002)
 - Contribution: show theoretically and empirically the implications of endogenous innovations across product space for inequality
- Literature on inflation inequality
 - Extensive literature investigating inflation experiences of different household groups: Amble and Stewart (1994), Garner, Johnson and Kokoski (1996) and Hobjin and Lagakos (2003), Murphy and Garvey (2004), Chiru (2005), McGranahan and Paulson (2005)
 - Recent work measuring inflation inequality using scanner data: Broda and Romalis (2009), Argente and Lee (2016), Kaplan and Schulhofer-Wohl (2016)
 - Contribution: show long-term trend of inflation inequality in scanner data (not business-cycle phenomenon) and importance of aggregation bias 4

• In retail, inflation was much lower for higher-income households...

 ...because supply responds to changes in demand...

• ...induced by shifts in the income distribution.

• In retail, inflation was much lower for higher-income households...

• ...because supply responds to changes in demand...

• ...induced by shifts in the income distribution.

- In retail, inflation was much lower for higher-income households...
- ...because supply responds to changes in demand...
- ...induced by shifts in the income distribution.

Roadmap

The Response of Supply to Market Size Effects

Roadmap

Data

Inflation across Income Groups

³ The Response of Supply to Market Size Effects

Scanner Data

- Nielsen Homescan Consumer Panel [Aguiar & Hurst 2007, Einav, Leibtag & Nevo 2008, Broda & Romalis 2009, Broda & Weinstein 2010, Stroebel & Vavra 2014]
 - Households scan prices and quantities for products with barcodes sold in US from 2004 to 2013 (e.g in department/grocery/drug/convenience stores)
 - Household characteristics: income, age, education, occupation, MSA, composition, ...
 - Representative of 40% of household expenditures on goods, 15% of total household expenditures (More on Consumptions Baskets)

NEW

LOWER PRICE

Roadmap

@ Inflation across Income Groups

In the Response of Supply to Market Size Effects

Roadmap

Data

Measuring Inflation across Income Groups

- Price changes for continued products (90% of spending)
- Valuing new and exiting products
- Aggregation bias
- Output State St

Price Changes for Continued Products

• Different price indices put different weights on the product-level price changes (substitution):

Laspeyres Index :
$$P^{L} \equiv \sum_{u=1}^{n} \frac{p_{u}^{t}}{p_{u}^{0}} s_{u}^{0}$$

CES Exact Price Index : $P^{CES} \equiv \prod_{c} \left(\frac{p_{u}^{t}}{p_{u}^{0}} \right)^{w_{ut}}$

with p_u^t price, s_u^t spending share and w_{ut} Sato-Vartia (1976) weights.

- Compute separate price indices across income groups
 - In baseline result: three income groups, price index is nested CES, and product u is a UPC

Price Changes for Continued Products

No Differential Substitution Effects

Roadmap

Data

Inflation across Income Groups

- Price changes for continued products
- **②** Valuing new and exiting products
- Aggregation bias
- Output State St

Roadmap

Data

Measuring Inflation across Income Groups

- Price changes on continued products
- Valuing new and exiting products
- Aggregation bias
- Ø Evidence outside retail

The Response of Supply to Market Size Effects

Decomposition of Inflation Difference

• Classifying products into categories indexed by *C*, the inflation difference between high- and low-income can be decomposed as: [Diewert 1975]

$$\pi^{H} - \pi^{L} \approx \underbrace{\left(\sum_{C} (s_{C}^{H} - s_{C}^{L}) \pi_{C}\right)}_{Between} + \underbrace{\sum_{C} \overline{s_{C}} (\pi_{C}^{H} - \pi_{C}^{L})}_{Within}$$

- with s_C^i share of spending of income group *i* on *C*, π_C^i the inflation experienced by income group *i* on *C*, π_C average inflation rate in *C*, $\overline{s_C}$ average spending share in *C*.
- Conduct decomposition for various levels of aggregation, using the nested CES price index for continued products

Aggregation Bias

• "Between" decomposition:

Aggregation Level	Share of Inflation	
(Broad to Narrow)	Difference Explained (%)	
Department	8.6	
(e.g. fresh produce vs. health and beauty care) Product Group	21.4	
(e.g. deodorant vs. hair care) Product Module	42.8	
(e.g. men's vs. women's hair coloring)		

More Decomposition Results

- This explains why old literature has found much smaller inflation inequality [Hobijn & Lagakos 2003, McGranahan & Paulson 2005, Chiru 2005]
 - Contrast with recent literature on inflation using scanner data: Argente and Lee (2016), Kaplan and Schulhofer-Wohl (2016)

Aggregation Bias

• "Between" decomposition:

Aggregation Level	Share of Inflation	
(Broad to Narrow)	Difference Explained (%)	
Department	8.6	
(e.g. fresh produce vs. health and beauty care) Product Group	21.4	
(e.g. deodorant vs. hair care) Product Module	42.8	
(e.g. men's vs. women's hair coloring)		

More Decomposition Results

- This explains why old literature has found much smaller inflation inequality [Hobijn & Lagakos 2003, McGranahan & Paulson 2005, Chiru 2005]
 - Contrast with recent literature on inflation using scanner data: Argente and Lee (2016), Kaplan and Schulhofer-Wohl (2016)

Roadmap

Data

Measuring Inflation across Income Groups

- Price changes on continued products
- Valuing new and exiting products
- Aggregation bias
- Evidence outside retail

The Response of Supply to Market Size Effects

Evidence Outside Retail

- Use CPI and CEX data to assess patterns outside retail: [McGranahan & Paulson 2005]
 - Price series on 48 expenditure categories going back to 1953, covering full consumption basket
 - Using expenditure shares fixed at 1980-1985 levels, compute inflation for baskets of households in top vs. bottom income quintiles
 - Subject to aggregation bias, but still useful

Long-Term Inflation Inequality

Implications for Inequality

- Over 2004-2015, nominal increase in food stamp benefits should have been 31.4% (instead of 23.2%) to preserve purchasing power
- From CEX, spending shares in (Nielsen) retail for top and bottom income quintiles are:

$$lpha^{Q1} = 18\%$$
 $lpha^{Q5} = 12\%$

• Under Cobb-Douglas upper nest, change in purchasing-power inequality per year over 2004-2015 given by:

$$\underbrace{\left(\Delta log(Y^{Q1}) - \Delta log(Y^{Q5})\right)}_{Income: -0.93 \ pp} - \underbrace{\left(\alpha^{Q1}\Delta log(\mathbb{P}^{Q1}) - \alpha^{Q5}\Delta log(\mathbb{P}^{Q5})\right)}_{Retail \ Inflation: \ 0.22 \ pp} - \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Income: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q1}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Incom: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q5}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)}_{Incom: -0.93 \ pp} + \underbrace{\left((1 - \alpha^{Q1})\Delta log(\widetilde{\mathbb{P}}^{Q5}) - (1 - \alpha^{Q5})\Delta log(\widetilde{\mathbb{P}}^{Q5})\right)$$

Inflation Outside Retail>0

Roadmap

③ The Response of Supply to Market Size Effects

Descriptive Evidence

- Product modules that grow faster characterized by:
 - Faster increase in product variety Graph
 - Increasing competition between manufacturers Graph
 - Lower inflation on continued products Graph
 - More spending from high-income households Graph
- Is this causal?

Roadmap

- The Response of Supply to Market Size Effects
 - Effect of demand on supply
 - O changes in the income distribution imply large inflation inequality?
 - Simple model

Effect of Demand on Supply

- Growth of demand in a given part of product space over time depends on:
 - Initial spending shares of household groups
 - Changes in number of households in each group
 - Changes in per-capita spending of households groups
- Bartik-style research design [Bartik 1991; Blanchard and Katz 1992; Acemoglu and Linn 2004; Dellavigna and Pollet 2007; Goldsmith-Pinkham, Sorkin and Swift 2016]:
 - Use component of demand growth coming from change in number of households, keeping spending share as in initial period
 - Measure supply response using two outcomes: spending on new products and price changes for continued products
- Implement using 108 age-income groups (9 income groups and 12 age groups) and product-module-by-price-decile cells across product space
 - Changes in age-by-income distribution measured in Current Population Survey between 2000-2004 and 2011-2015
 - Conduct analysis at national level

Effect of Demand on Supply

- Growth of demand in a given part of product space over time depends on:
 - Initial spending shares of household groups
 - Changes in number of households in each group
 - Changes in per-capita spending of households groups
- Bartik-style research design [Bartik 1991; Blanchard and Katz 1992; Acemoglu and Linn 2004; Dellavigna and Pollet 2007; Goldsmith-Pinkham, Sorkin and Swift 2016]:
 - Use component of demand growth coming from change in number of households, keeping spending share as in initial period
 - Measure supply response using two outcomes: spending on new products and price changes for continued products
- Implement using 108 age-income groups (9 income groups and 12 age groups) and product-module-by-price-decile cells across product space
 - Changes in age-by-income distribution measured in Current Population Survey between 2000-2004 and 2011-2015
 - Conduct analysis at national level

Effect of Demand on Supply

- Growth of demand in a given part of product space over time depends on:
 - Initial spending shares of household groups
 - Changes in number of households in each group
 - Changes in per-capita spending of households groups
- Bartik-style research design [Bartik 1991; Blanchard and Katz 1992; Acemoglu and Linn 2004; Dellavigna and Pollet 2007; Goldsmith-Pinkham, Sorkin and Swift 2016]:
 - Use component of demand growth coming from change in number of households, keeping spending share as in initial period
 - Measure supply response using two outcomes: spending on new products and price changes for continued products
- Implement using 108 age-income groups (9 income groups and 12 age groups) and product-module-by-price-decile cells across product space
 - Changes in age-by-income distribution measured in Current Population Survey between 2000-2004 and 2011-2015
 - Conduct analysis at national level

Spending on Baby Diapers by Age Groups

Spending Across Quality Ladder by Income Groups

Changes in Income Distribution for 30-Year-Olds (CPS Data)

Relevance of Demand Growth Predictor

Results

Effect of Demand on New Products

Effect of Demand on Inflation for Continued Products

Effect of Demand on Supply: Main Results

	Share of Spending	Continued Products
	on New Products (pp)	Inflation Rate (pp)
Predicted Increase in Spending,	2.7358***	-0.4349***
Annualized (%)	(0.4887)	(0.1195)
Age and Income Controls	Yes	Yes
Product Module Fixed Effects	Yes	Yes
R^2	0.54	0.52
Number of Observations	10,750	10,750
Number of Clusters	1,075	1,075

Standard errors clustered by product modules

Interpreting Magnitudes More Graphs Robustness

Roadmap

The Response of Supply to Market Size Effects

- Effect of demand on supply
- O changes in the income distribution imply large inflation inequality?
- Simple model

Supply Response to Shifts in Income Distribution

- Use two ingredients to build inflation inequality implied by shifts in income distribution:
 - Historical changes in the income distribution to get changes in demand:

$$d_l = \sum_n s_{nl} \cdot g_n$$

where *n* denote 18 household income groups, with average growth rate g_n in 1996-2006 from CPS data Graph

Point estimates to get new products and price changes on continued products implied by change in demand:

New Products₁^{Implied} =
$$2.73 \cdot d_1$$

 $\Pi_1^{Implied} = -0.43 \cdot d_1$

- Compare implied vs. actual relationships between new products/price changes and mean consumer income $(I_l \equiv \sum_n s_{nl} I_n)$ across product space
 - Result: implied relationships account for > 80% of actual relationships

Supply Response to Shifts in Income Distribution

- Use two ingredients to build inflation inequality implied by shifts in income distribution:
 - Historical changes in the income distribution to get changes in demand:

$$d_l = \sum_n s_{nl} \cdot g_n$$

where *n* denote 18 household income groups, with average growth rate g_n in 1996-2006 from CPS data Graph

Point estimates to get new products and price changes on continued products implied by change in demand:

New Products^{Implied} =
$$2.73 \cdot d_I$$

 $\Pi_I^{Implied} = -0.43 \cdot d_I$

- Compare implied vs. actual relationships between new products/price changes and mean consumer income $(I_l \equiv \sum_n s_{nl} I_n)$ across product space
 - Result: implied relationships account for > 80% of actual relationships

Supply Response to Shifts in Income Distribution

- Use two ingredients to build inflation inequality implied by shifts in income distribution:
 - Historical changes in the income distribution to get changes in demand:

$$d_l = \sum_n s_{nl} \cdot g_n$$

where *n* denote 18 household income groups, with average growth rate g_n in 1996-2006 from CPS data Graph

Point estimates to get new products and price changes on continued products implied by change in demand:

New Products^{Implied} =
$$2.73 \cdot d_I$$

 $\Pi_I^{Implied} = -0.43 \cdot d_I$

- Compare implied vs. actual relationships between new products/price changes and mean consumer income $(I_l \equiv \sum_n s_{nl} I_n)$ across product space
 - Result: implied relationships account for > 80% of actual relationships

New Products From Shifts in Income Distribution

Inflation Inequality From Shifts in Income Distribution

Roadmap

The Response of Supply to Market Size Effects

- Effect of demand on supply
- O changes in the income distribution imply large inflation inequality?
- Simple model

Overview of Model

- GE model with free entry across sectors indexed by k and L_{it} consumers of type i, with productivity Y_i , in closed economy Consumers' Problem (Firms' Problem) Closed-Form Solutions (Interpreting Magnitudes)
- Key ingredients: non-homothetic preferences and downward-sloping long-term supply curve [Bresnahan and Reiss 1991; Acemoglu 1996, 2002, 2007; Feenstra and Weinstein 2016; Comin, Lashkari, Mestieri 2016]
- Key prediction: given secular changes in the US income distribution, inflation inequality should be a long-term trend

Conclusion

Lower Inflation for Higher-Income Households in Retail...

... because Supply Responds to Shifting Demand ...

... due to Changes in the Income Distribution.

Thanks!