Jean-Guillaume Sahuc^{1, 2} Frank Smets^{3, 4} Gauthier Vermandel^{5, 6, 1}

¹Banque de France ²Université Paris-Nanterre ³European Central Bank ⁴Ghent University ⁵CMAP, Ecole polytechnique, Institut Polytechnique de Paris. ⁶LEDa, Paris-Dauphine and PSL Universities.

– ChaMP Research Network, April 2024 –

INTRODUCTION

- Climate change will change the macroeconomic landscape in the next decades and the central bank will have to face 2 phenomena [Schnabel 2022]:
 - ▶ On the one hand, a warming planet causes damages that will make resources scarcer & prices higher \rightarrow climateflation.
 - ▶ On the other hand, the fight against climate change (through increasing carbon taxes) will make fossil fuels & raw materials more expensive \rightarrow greenflation.
- ▶ How should the central bank conduct monetary policy in this new landscape?
- Answering this question requires to understand the effects of climate change on the economy.

This paper

- ▶ The canonical New Keynesian model is silent on climate developments.
- ▶ This paper develops The New Keynesian Climate (NKC) model by:
 - extending the canonical model with a carbon accumulation constraint and a mitigation policy from the Integrated Assessment Model (IAM) literature;
 - estimating this model for the world economy with techniques that take into account nonlinearities resulting from climate change;
 - providing projections up to horizon 2100 under mitigation versus *laissez-faire* policy by changing an exogenous carbon tax rate.
- This allows us to analyze the impact of climate change on inflation and monetary policy.

Methodological breakthrough

- <u>Standard view</u>: stable propagation mechanism with fluctuations naturally decaying over time back to a steady state.
- Climate problem: the way carbon emissions cumulate over time permanently changes the propagation patterns \rightarrow no steady state.
- ▶ We solve our nonlinear model taking into account both long and short term effects using the Fair and Taylor (1983)'s extended path solution method.
- We estimate the model using Bayesian nonlinear techniques based on the inversion filter from Fair and Taylor (1983).

LITERATURE

Our paper is connected to three literatures:

- IAMs analyze the long-term effect of carbon accumulation [Nordhaus 1992; Dietz and Venmans 2019; Barrage and Nordhaus 2023], but take a benign view of fluctuations and price rigidity.
- ▶ E-DSGE with nominal rigidities [Annicchiarico and Di Dio 2015; Ferrari and Nispi Landi 2022; Coenen et al. 2023; Del Negro et al. 2023], but no explicit demographic and climate trends.
- Standard New Keynesian models [Woodford 2003; Smets and Wouters 2007], without climate change.

OUTLINE

1 Introduction

2 The NKC model

3 Estimation

4 The Anatomy of Green/Climateflation

5 Conclusion

1 Introduction

2 The NKC model

3 Estimation

4 The Anatomy of Green/Climateflation

5 Conclusion

USUAL INGREDIENTS

- Households: Households Appendix
 - ▶ They choose their consumption, saving and labor supply by maximizing intertemporal utility
 - ▶ Demographic trend: population size is exogenous and time-varying.
- Firms: Firms Appendix
 - Producers solve a two-stage problem: (i) choose labor to maximize profits and (ii) decide their selling price under a Rotemberg price setting.
- Central bank: B Appendix
 - ▶ It chooses interest rate by following a Taylor-type rule.

The core New Keynesian model comprises three equations:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

 $x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$

PC:
$$(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$$

 $m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$

Detrended GDP

The core New Keynesian model comprises three equations:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

$$x_t = 1 - \kappa \left(\pi_t - \pi_t^*\right)^2$$

PC:
$$(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$$

 $m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$

Detrended GDP
The core New Keynesian model comprises three equations:
IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

 $x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$
cons-to-gdp
PC: $(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} mc_t + \kappa^{-1} (1 - \zeta)$
 $mc_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$

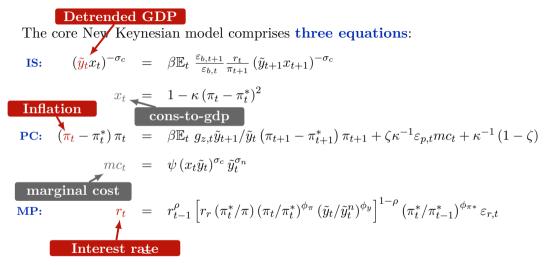
Detrended GDP
The core New Keynesian model comprises three equations:
IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

 $x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$
Inflation
PC: $(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$
 $m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$

MP:

$$r_{t} = r_{t-1}^{\rho} \left[r_{r} \left(\pi_{t}^{*} / \pi \right) \left(\pi_{t} / \pi_{t}^{*} \right)^{\phi_{\pi}} \left(\tilde{y}_{t} / \tilde{y}_{t}^{n} \right)^{\phi_{y}} \right]^{1-\rho} \left(\pi_{t}^{*} / \pi_{t-1}^{*} \right)^{\phi_{\pi}*} \varepsilon_{r,t}$$

Detrended GDP The core New Keynesian model comprises three equations: IS: $(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$ Inflation PC: $(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$ $mc_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$ marginal cost $r_{t} = r_{t-1}^{\rho} \left[r_{r} \left(\pi_{t}^{*} / \pi \right) \left(\pi_{t} / \pi_{t}^{*} \right)^{\phi_{\pi}} \left(\tilde{y}_{t} / \tilde{y}_{t}^{n} \right)^{\phi_{y}} \right]^{1-\rho} \left(\pi_{t}^{*} / \pi_{t-1}^{*} \right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$ MP:



The core New Keynesian model comprises three equations and shocks:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

 $x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$

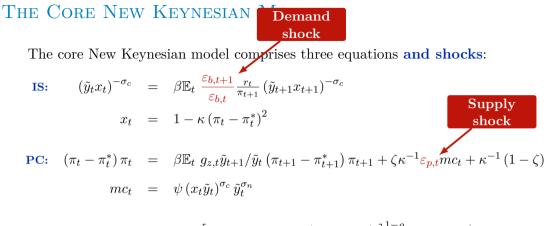
PC:
$$(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$$

 $m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$

THE CORE NEW KEYNESIAN Demand shock The core New Keynesian model comprises three equations and shocks: IS: $(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$ $x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$

PC:
$$(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$$

 $m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$





The core New Keynesian model comprises three equations and shocks and trends:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

 $x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$

PC:
$$(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$$

 $m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$

The core New Keynesian model comprises three equations and shocks **and trends**:

IS:
$$(\tilde{y}_{t}x_{t})^{-\sigma_{c}}$$
 inflation $t_{t}t_{t} = t_{t} (\tilde{y}_{t+1}x_{t+1})^{-\sigma_{c}}$
target $\pi_{t} - \pi_{t}^{*})^{2}$
PC: $(\pi_{t} - \pi_{t}^{*})\pi_{t} = \beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} mc_{t} + \kappa^{-1} (1 - \zeta)$
 $mc_{t} = \psi (x_{t}\tilde{y}_{t})^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}}$

 \mathbf{MP} :

$$r_{t} = r_{t-1}^{\rho} \left[r_{r} \left(\pi_{t}^{*} / \pi \right) \left(\pi_{t} / \pi_{t}^{*} \right)^{\phi_{\pi}} \left(\tilde{y}_{t} / \tilde{y}_{t}^{n} \right)^{\phi_{y}} \right]^{1-\rho} \left(\pi_{t}^{*} / \pi_{t-1}^{*} \right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$

The core New Keynesian model comprises three equations and shocks **and trends**:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c}$$
 inflation $\tilde{y}_{t+1} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$
target π_t growth
PC: $(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$
 $m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$

 \mathbf{MP} :

$$r_{t} = r_{t-1}^{\rho} \left[r_{r} \left(\pi_{t}^{*} / \pi \right) \left(\pi_{t} / \pi_{t}^{*} \right)^{\phi_{\pi}} \left(\tilde{y}_{t} / \tilde{y}_{t}^{n} \right)^{\phi_{y}} \right]^{1-\rho} \left(\pi_{t}^{*} / \pi_{t-1}^{*} \right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$

MODIFICATION: HIGHER DISCOUNTING

▶ Discounting is a critical and pervasive issue in macroeconomic analyses.

- ▶ In New Keynesian models, long term policies lead to implausibly large effects in present value terms (e.g., the *forward guidance puzzle*).
- ▶ This issue is particularly pronounced when considering mitigation of climate change and other long-term environmental policies.
- ▶ We introduce: (i) income risk à la McKay et al. $2017 \Rightarrow$ discounted Euler equation and (ii) firms's exit à la Bilbiie et al. $2012 \Rightarrow$ discounted Phillips curve.

The Modified New Keynesian Model

Two frictions to attenuate the expectation channel:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{\tilde{y}_{t+1} x_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - \kappa \left(\pi_t - \pi_t^*\right)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} m c_t)$$

 $\begin{aligned} \mathbf{PC:} \quad (\pi_t - \pi_t^*) \,\pi_t &= (1 - \vartheta) \beta \mathbb{E}_t \, g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right) \\ m c_t &= \psi \left(x_t \tilde{y}_t - \omega d \right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \end{aligned}$

THE MODIFIED NEW KEYNESIAN MODEL Euler discounting

Two frictions to attenuate the expectation channel:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{\tilde{y}_{t+1} x_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - \kappa \left(\pi_t - \pi_t^* \right)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} m c_t)$$

 $\begin{aligned} \mathbf{PC:} \quad (\pi_t - \pi_t^*) \,\pi_t &= (1 - \vartheta) \beta \mathbb{E}_t \, g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right) \\ m c_t &= \psi \left(x_t \tilde{y}_t - \omega d \right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \end{aligned}$

THE MODIFIED NEW KEYNESIAN MODEL Euler discounting

Two frictions to attenuate the expectation channel:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega)\left(\frac{\tilde{y}_{t+1}x_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

$$\mathbf{PC}$$

$$\mathbf{x}_{t} = 1-\kappa \left(\pi_{t}-\pi_{t}^{*}\right)^{2} \left(1-\vartheta\right) - \vartheta \left(1-\varepsilon_{p,t}mc_{t}\right)$$

$$\mathbf{PC:} \quad \left(\pi_{t}-\pi_{t}^{*}\right)\pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1}-\pi_{t+1}^{*}\right)\pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} \left(1-\zeta\right)$$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t}-\omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}}$$

MP:

$$r_{t} = r_{t-1}^{\rho} \left[r_{r} \left(\pi_{t}^{*} / \pi \right) \left(\pi_{t} / \pi_{t}^{*} \right)^{\phi_{\pi}} \left(\tilde{y}_{t} / \tilde{y}_{t}^{n} \right)^{\phi_{y}} \right]^{1-\rho} \left(\pi_{t}^{*} / \pi_{t-1}^{*} \right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$

Carbon accumulation and its damages:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t)$$

 $\begin{aligned} \mathbf{PC:} \quad & (\pi_t - \pi_t^*) \,\pi_t &= (1 - \vartheta) \beta \mathbb{E}_t \, g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right) \\ & m c_t &= \psi \left(x_t \tilde{y}_t - \omega d \right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \, \Phi \left(\tilde{m}_t \right)^{-(1 + \sigma_n)} \end{aligned}$

MP: $r_t = r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_\pi} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \left(\pi_t^* / \pi_{t-1}^* \right)^{\phi_{\pi^*}} \varepsilon_{r,t}$

CC: $\tilde{m}_t = (1 - \delta_m)\tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}$

Carbon accumulation and its damages:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t)$$

$$\mathbf{PC:} \quad (\pi_t - \pi_t^*) \,\pi_t = (1 - \vartheta) \beta \mathbb{E}_t \, g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right) \\ m c_t = \psi \left(x_t \tilde{y}_t - \omega d \right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \, \Phi \left(\tilde{m}_t \right)^{-(1 + \sigma_n)}$$

MP: $r_t = r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_\pi} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \left(\pi_t^* / \pi_{t-1}^* \right)^{\phi_{\pi^*}} \varepsilon_{r,t}$

CC: $\tilde{m}_t = (1 - \delta_m)\tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}$ Anthropogenic carbon stock

Carbon accumulation and its damages:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t)$$

PC:
$$(\pi_t - \pi_t^*) \pi_t = (1 - \vartheta) \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$$

 $m c_t = \psi (x_t \tilde{y}_t - \omega d)^{\sigma_c} \tilde{y}_t^{\sigma_n} \Phi (\tilde{m}_t)^{-(1+\sigma_n)}$
MP: $r_t = r_{t-1}^{\rho} \underbrace{\text{Deterministic}}_{\substack{p \in \mathcal{O} \\ p \in \mathcal{O}}} \underbrace{\tilde{y}_t / \tilde{y}_t^n}_{t} \phi_y^{\phi_y} \Big]^{1-\rho} (\pi_t^* / \pi_{t-1}^*)^{\phi_{\pi^*}} \varepsilon_{r,t}$
CC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}$
hthropogenic carbon stock

Carbon accumulation and its damages:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t)$$

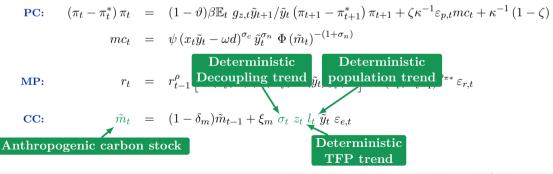
PC:
$$(\pi_t - \pi_t^*) \pi_t = (1 - \vartheta) \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$$

 $m c_t = \psi (x_t \tilde{y}_t - \omega d)^{\sigma_c} \tilde{y}_t^{\sigma_n} \Phi (\tilde{m}_t)^{-(1+\sigma_n)}$
MP: $r_t = r_{t-1}^{\rho} \underbrace{\text{Deterministic}}_{\text{Decoupling trend}} \tilde{y}_t / \tilde{y}_t^n)^{\phi_y} \Big]^{1-\rho} (\pi_t^* / \pi_{t-1}^*)^{\phi_{\pi^*}} \varepsilon_{r,t}$
CC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}$
hthropogenic carbon stock
Deterministic
TFP trend

The New Keynesian Climate model 14 / 39

Carbon accumulation and its damages:

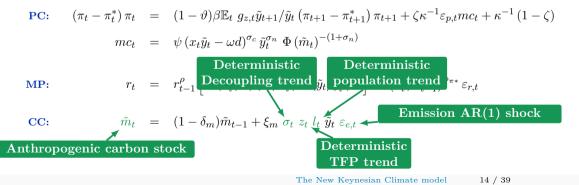
$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t)$$



The New Keynesian Climate model 14 / 39

Carbon accumulation and its damages:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t)$$



Carbon accumulation and its damages:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)$$
$$x_t = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t)$$

$$\begin{aligned} \mathbf{PC:} \quad (\pi_t - \pi_t^*) \,\pi_t &= (1 - \vartheta) \beta \mathbb{E}_t \, g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right) \\ m c_t &= \psi \left(x_t \tilde{y}_t - \omega d \right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \, \Phi \left(\tilde{m}_t \right)^{-(1 + \sigma_n)} \longleftarrow \end{aligned} \end{aligned}$$

MP: $r_t = r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_\pi} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \left(\pi_t^* / \pi_{t-1}^* \right)^{\phi_{\pi^*}} \varepsilon_{r,t}$

CC: $\tilde{m}_t = (1 - \delta_m)\tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}$

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega}\right)^{-\sigma_c} + \omega d^{-\sigma_c} \right) \underbrace{\text{expenditures}}_{\mathbf{x}_t} = 1 - (1 - \vartheta) 0.5 \kappa \left(\pi_t - \pi_t^*\right)^2 - \vartheta (1 - \varepsilon_{p,t} m c_t) - \theta_{1,t} \tilde{\tau}_t^{\theta_2/(\theta_2 - 1)}$$

$$\mathbf{PC:} \quad (\pi_t - \pi_t^*) \,\pi_t = (1 - \vartheta) \beta \mathbb{E}_t \, g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right) \\ m c_t = \psi \left(x_t \tilde{y}_t - \omega d \right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \,\Phi \left(\tilde{m}_t \right)^{-(1 + \sigma_n)} + \theta_{1,t} \tilde{\tau}_t \left(\theta_2 + (1 - \theta_2) \tilde{\tau}_t^{1/(\theta_2 - 1)} \right)$$

MP:
$$r_t = r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_\pi} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \left(\pi_t^* / \pi_{t-1}^* \right)^{\phi_{\pi^*}} \varepsilon_{r,t}$$

CC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t} \left(1 - \tilde{\tau}_t^{1/(\theta_2 - 1)} \right)$

Mitigation

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

$$\mathbf{IS:} \quad \left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right) \qquad \begin{array}{l} \text{Principation} \\ \mathbf{expenditures} \\ x_{t} = 1 - (1-\vartheta) 0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta \left(1-\varepsilon_{p,t}mc_{t}\right) - \vartheta_{1,t}\tilde{\tau}_{t}^{\vartheta_{2}/(\vartheta_{2}-1)} \\ \mathbf{PC:} \quad \left(\pi_{t} - \pi_{t}^{*}\right)\pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right)\pi_{t+1} + \zeta\kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} \left(1-\zeta\right) \\ mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})} + \vartheta_{1,t}\tilde{\tau}_{t} \left(\vartheta_{2} + (1-\vartheta_{2})\tilde{\tau}_{t}^{1/(\vartheta_{2}-1)}\right) \\ \mathbf{PC:} \quad r_{t} = r_{t-1}^{\rho} \left[r_{r} \left(\pi_{t}^{*}/\pi\right) \left(\pi_{t}/\pi_{t}^{*}\right)^{\varphi_{\pi}} \left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\varphi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\varphi_{\pi*}} \varepsilon_{r,t} \\ \end{array}$$

CC:
$$\tilde{m}_t = (1 - \delta_m)\tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t} \left(1 - \tilde{\tau}_t^{1/(\theta_2 - 1)}\right)$$

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

$$IS: \left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right) \xrightarrow{\text{expenditures}} x_{t} = 1 - (1-\vartheta) 0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta \left(1 - \varepsilon_{p,t}mc_{t}\right) - \vartheta_{1,t}\tilde{\tau}_{t}^{\vartheta_{2}/(\vartheta_{2}-1)} \xrightarrow{\text{Carbon tax costs}} PC: \left(\pi_{t} - \pi_{t}^{*}\right)\pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right)\pi_{t+1} + \zeta\kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1}\left(1-\zeta\right) \xrightarrow{mc_{t}} \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})} + \vartheta_{1,t}\tilde{\tau}_{t} \left(\vartheta_{2} + (1-\vartheta_{2})\tilde{\tau}_{t}^{1/(\vartheta_{2}-1)}\right) \xrightarrow{mc_{t}} \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})} + \vartheta_{1,t}\tilde{\tau}_{t} \left(\vartheta_{2} + (1-\vartheta_{2})\tilde{\tau}_{t}^{1/(\vartheta_{2}-1)}\right) \xrightarrow{mc_{t}} w \left(1 - \delta_{m}\right)\tilde{m}_{t-1} + \xi_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t} \left(1 - \tilde{\tau}_{t}^{1/(\vartheta_{2}-1)}\right)$$

1 Introduction

2 The NKC model

3 Estimation

4 The Anatomy of Green/Climateflation

5 Conclusion

ESTIMATION

 Estimation on world data from 1985Q1 to 2023Q3 (sources: World Bank, OECD and OurWorldInData).

▶ There are four observable variables:

$$\begin{array}{c} \text{Real output growth rate} \\ \text{Inflation rate} \\ \text{Short-term interest rate} \\ \text{CO}_2 \text{ emissions growth rate} \end{array} \right] = 100 \times \begin{bmatrix} \Delta \log(y_t) \\ \pi_t - 1 \\ r_t - 1 \\ \Delta \log(e_t) \end{bmatrix}$$

ESTIMATION

• Our statistical model is an extension of Fair and Taylor (1983) to deal with trends:

$$\tilde{y}_t = g_\Theta(y_0, y, 0) \tag{1}$$

$$y_t = \mathbb{E}_{t,t+S} \left\{ g_{\Theta} \left(y_{t-1}, \tilde{y}_{t+S+1}, \varepsilon_t \right) \right\}$$
(2)

$$\mathcal{Y}_t = h_{\Theta}\left(y_t\right) \tag{3}$$

$$\varepsilon_t \sim \mathcal{N}(0, \Sigma_{\varepsilon})$$
 (4)

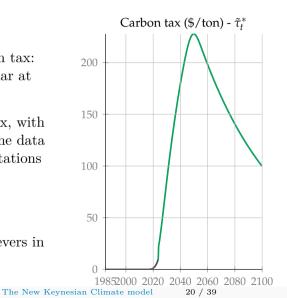
- Compute the deterministic path \tilde{y}_t , add stochastic innovations through extended path $\mathbb{E}_{t,t+S}\{\cdot\}$ with the expectation horizon S.
- Naximize sample likelihood $\mathcal{L}(\theta, \mathcal{Y}_{1:T^*})$ & run Metropolis-Hastings to compute uncertainty bands.

ESTIMATION

- Large uncertainty about future carbon tax: implications for estimation in particular at the end of the sample.
- Let $\tilde{\tau}_t^*$ denote the Paris-Agreement tax, with rising carbon tax up to 2050, we let the data inform about the market-based expectations on future carbon mitigation policies:

$$\mathbb{E}_{t,t+S}\{\tilde{\tau}_t\} = \varphi \tilde{\tau}_t^*$$

where $\varphi \in [0, 1]$ is the fraction of believers in Paris-Agreement policy.



CALIBRATED PARAMETERS

Parameter	NAME	VALUE
Panel A: Climate Parameters		
CO ₂ rate of transfer to deep oceans	δ_m	0.00125
Marginal atmospheric retention ratio	ξ_m	0.27273
Pre-industrial stock of carbon (GtC)	m_{1750}	545
Climate damage elasticity	γ	2.379e-05
Initial stock of carbon (GtC)	$m_{1984:4}$	736.98
Panel B: Socio-economic Parameters		
Firm exit shock	ν	0.025
Low productivity worker payoff-to-consumption	d/c	0.85
Initial population (billions)	$l_{1984:4}$	4.85
Terminal population (billions)	l_T	11.42107
Population growth growth	l_g	0.0055
Goods elasticity	ŝ	6
Decay rate of TFP	$\delta_z \times 400$	0.3
Initial hours worked	$h_{1984:4}$	1
Labor intensity	α	0.7
Initial emissions (GtCO ₂)	$e_{1984:4}$	5.0825
Initial GDP (trillions USD PPP)	$y_{1984:4}$	11.25
Panel C: Abatement Sector Parameters		
Initial abatement cost	$\theta_{1,1984:4}$	0.30604
Abatement cost	θ_2	2.6
Decay rate of abatement cost	δ_{pb}	0.004277
Initial abatement	$\mu_{1984:4}$	0.0001
Abatement in 2020	$\mu_{2020:1}$	0.05

ESTIMATED PARAMETERS

		Prior Distribution			Posterior Distribution		
		Shape	Mean	Std	Mode	Me	ean [5%:95%]
Panel A: Shock proce	esses						
Std demand	σ_b	\mathcal{IG}_2	0.001	1	0.0245	0.0253	[0.0231:0.0275]
Std price	σ_p	\mathcal{IG}_2	0.001	1	0.0046	0.0051	[0.0045:0.0056]
Std MPR	σ_r	\mathcal{IG}_2	0.001	1	0.0009	0.0009	[0.0008:0.0011]
Std emissions	σ_e	\mathcal{IG}_2	0.001	1	0.0049	0.0047	[0.0042:0.005]
AR demand	ρ_b	B	0.5	0.15	0.5974	0.6115	[0.5965:0.6322]
AR price	ρ_b	B	0.5	0.15	0.9839	0.9839	[0.9839:0.9839]
AR MPR	ρ_r	B	0.5	0.15	0.5407	0.5341	[0.4711:0.5932]
AR emissions	ρ_e	\mathcal{B}	0.5	0.15	0.9686	0.9707	[0.9592:0.9823]
Panel B: Structural p	parameters						
Initial TFP growth	$g_{z,t_0} \times 400$	G	1.5	0.5	1.735	1.735	[1.735:1.735]
Decoupling rate	g_{σ,t_0}	G	1.5	0.5	1.262	1.2254	[1.1465:1.323]
Decay TFP	$\delta_z \times 400$	G	0.5	0.35	0.0464	0.0519	[0.0411:0.0732]
Risk aversion	σ_c	G	2	0.15	1.1394	1.2608	[1.1371:1.3715]
Labor disutility	σ_h	G	2	0.5	0.1708	0.1799	[0.1649:0.2094]
Rotemberg Cost	κ	G	25	7.5	117.9202	117.9202	(117.9194:117.9205
Initial inflation trend	$\pi_{*,t_0} \times 400$	G	12	1	12.8434	12.6125	[11.3687:13.6154]
Initial inflation trend	$g_{\pi} \times 400$	\mathcal{N}	8	2	9.2703	9.2905	[9.1232:9.4962]
Initial interest rate	$r_{t_0} \times 400$	\mathcal{N}	12	2	8.7509	8.7746	[8.3039:9.362]
Share Low prod.	ω	B	0.05	0.01	0.0512	0.0496	[0.0422:0.0556]
Inflation stance	ϕ_{π}	G	0.75	0.05	0.5883	0.6367	[0.5702:0.6943]
MPR GDP stance	ϕ_y	G	0.5	0.1	0.5265	0.5342	[0.4712:0.6058]
Discount rate	$(\beta^{-1} - 1) \times 100$	G	1	0.5	0.8055	0.8282	[0.7976:0.8617]
Mitigation policy belief	φ	U	0.5	0.2887	0.5264	0.5235	[0.5047:0.552]
MPR smoothing	ρ	B	0.5	0.075	0.9127	0.9127	[0.9127:0.9128]
Trend stance	$\dot{\phi}_*$	\mathcal{N}	0.5	0.5	-0.4482	-0.4434	[-0.4625:-0.4185]
Log marginal data densi	ty						-3104.54

STOCHASTIC AND DETERMINISTIC PATHS

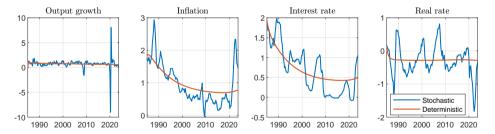


Figure 1: Implied deterministic and stochastic paths

1 Introduction

2 The NKC model

3 Estimation

4 The Anatomy of Green/Climateflation

5 Conclusion

THE ANATOMY OF GREEN/CLIMATEFLATION

- ▶ What is the future macroeconomic landscape by the end of the century?
- We consider three alternative scenarios based on the realization of the carbon tax $\varphi \tilde{\tau}_t^*$:
 - ▶ Paris-Agreement with $\varphi = 1$.
 - Estimated carbon path with $\varphi = 0.53$.
 - Laissez-faire with $\varphi = 0$.

THREE TRANSITIONS

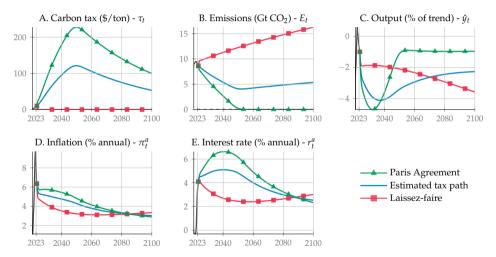
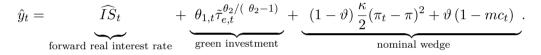
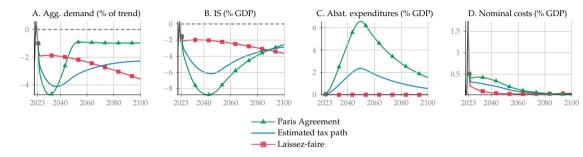


Figure 2: Model-implied projections based on alternative control rates of emissions

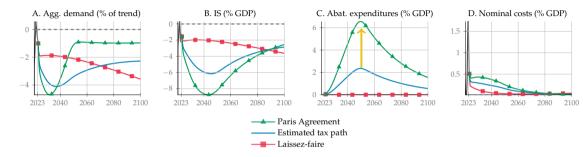
One can split the aggregate demand equation into three terms:



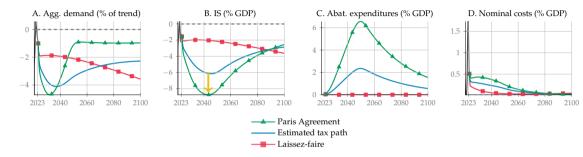
- **Forward real interest rate term:** from discounted Euler equation.
- **Green investment term:** from abating more carbon emissions.
- ▶ Nominal wedge term: from adjusting price and exit shock.



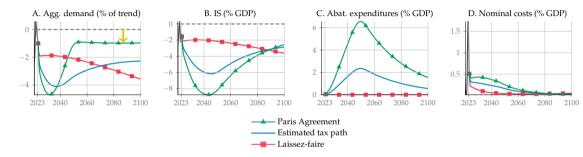
- ▶ The rise in carbon tax triggers a boost in abatement expenditures, and increases aggregate demand.
- ▶ Monetary policy dampens the boom by a real rate increase.
- ▶ Damages are stabilized, but let GDP 1% below the technological trend.



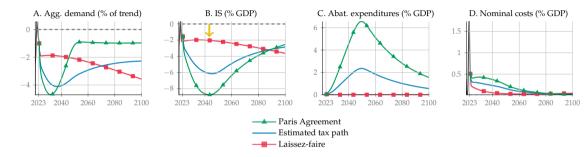
- The rise in carbon tax triggers a boost in abatement expenditures, and increases aggregate demand.
- ▶ Monetary policy dampens the boom by a real rate increase.
- ▶ Damages are stabilized, but let GDP 1% below the technological trend.



- ▶ The rise in carbon tax triggers a boost in abatement expenditure, and increases aggregate demand.
- ▶ Monetary policy dampens the boom by a real rate increase.
- ▶ Damages are stabilized, but let GDP 1% below the technological trend.

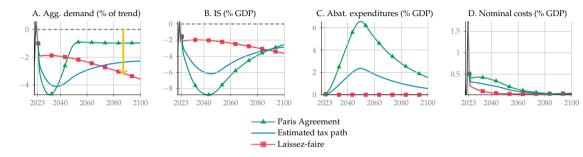


- ▶ The rise in carbon tax triggers a boost in abatement expenditure, and increases aggregate demand.
- ▶ Monetary policy dampens the boom by a real rate increase.
- ▶ Damages are stabilized, but let GDP 1% below the technological trend.



► Under Laissez-faire:

- ▶ Monetary policy contains the surge in inflation by maintaining real rate high.
- ▶ As damages grow, the IS permanently deteriorates aggregate demand.



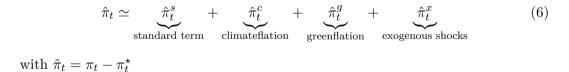
► Under Laissez-faire:

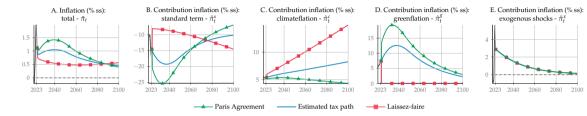
- ▶ Monetary policy contains the surge in inflation by maintaining real rate high.
- ▶ As damages grow, the IS permanently deteriorates aggregate demand.

One can split the marginal cost into three term:

$$mc_{t} = \underbrace{\tilde{w}_{t}}_{\text{standard}} / \underbrace{\Phi(m_{t})}_{\text{climateflation}} + \underbrace{\theta_{1,t}\mu_{t}^{\theta_{2}} + \tau_{e,t}\sigma_{t}\left(1 - \mu_{t}\right)\varepsilon_{e,t}}_{\text{greenflation}},$$
(5)

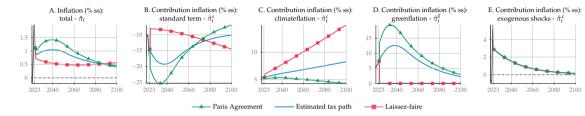
which allows to break down inflation into 4 different forces:



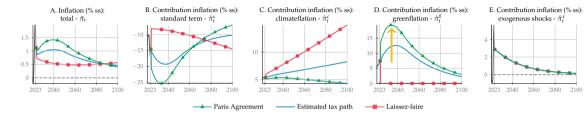


▶ Very different inflation dynamics between the 2 regimes.

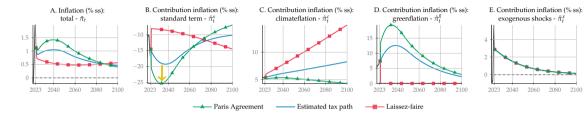
▶ What drives this gap?



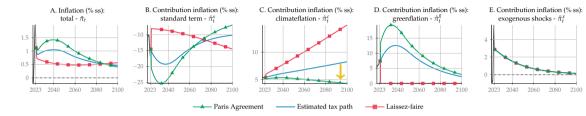
- ▶ The immediate increase in carbon tax fuels inflation.
- But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.



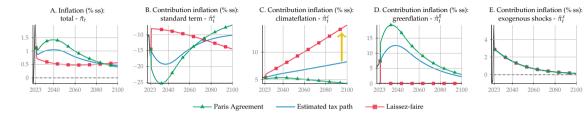
- ▶ The immediate increase in carbon tax fuels inflation.
- But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.



- ▶ The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.

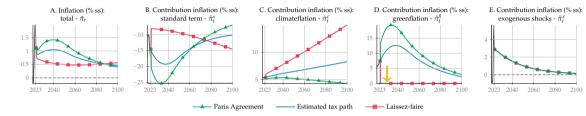


- ▶ The immediate increase in carbon tax fuels inflation.
- But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.



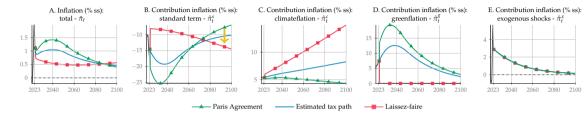
▶ Under Laissez-faire:

- The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.



▶ Under Laissez-faire:

- ▶ The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.



▶ Under Laissez-faire:

- The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.

1 Introduction

2 The NKC model

3 Estimation

4 The Anatomy of Green/Climateflation

5 Conclusion

CONCLUSION

- ▶ This paper has developed a four-dimensional New Keynesian model with climate externality.
- This framework allows us to identify two phenomena faced by the central bank:
 - ▶ The first one is a persistent negative supply shock called *climateflation* that arises from the deleterious effects of climate change itself:
 - ▶ The second one is a transitory positive demand shock called *greenflation* that appears following the implementation of a climate mitigation policy;
- Ongoing work: analyzing the conduct of monetary policy in the wake of those two phenomena.

Thank you for your attention

- Annicchiarico, B. and Di Dio, F. (2015). Environmental policy and macroeconomic dynamics in a New Keynesian model. *Journal of Environmental Economics and Management*, 69:1–21.
- Barrage, L. and Nordhaus, W. D. (2023). Policies, projections, and the social cost of carbon: Results from the dice-2023 model. Technical report, National Bureau of Economic Research.
- Bilbiie, F., Ghironi, F., and Melitz, M. (2012). Endogenous entry, product variety, and business cycles. *Journal of Political Economy*, 120:304–345.
- Coenen, G., Priftis, R., and Lozej, M. (2023). Macroeconomic effects of carbon transition policies: An assessment based on the ecb's new area-wide model with a disaggregated energy sector.
- Del Negro, M., Di Giovanni, J., and Dogra, K. (2023). Is the green transition inflationary? *FRB of New York Staff Report*, (1053).
- Dietz, S. and Venmans, F. (2019). Cumulative carbon emissions and economic policy: in search of general principles. *Journal of Environmental Economics and Management*, 96:108–129.
- Fair, R. and Taylor, J. (1983). Solution and maximum likelihood estimation of dynamic nonlinear rational expectations models. *Econometrica*, 51:1169–1185.

- Ferrari, A. and Nispi Landi, V. (2022). Will the green transition be inflationary? expectations matter.
- Golosov, M., Hassler, J., Krusell, P., and Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. *Econometrica*, 82:41–88.
- McKay, A., Nakamura, E., and Steinsson, J. (2017). The Discounted Euler Equation: A Note. *Economica*, 84(336):820–831.
- Nordhaus, W. (1992). The 'DICE' model: Background and structure of a dynamic integrated climate-economy model of the economics of global warming. Technical report, Cowles Foundation for Research in Economics, Yale University.
- Schnabel, I. (2022). A new age of energy inflation: climateflation, fossilflation and greenflation. In *Remarks at a panel on "Monetary Policy and Climate Change" at The ECB and its Watchers XXII Conference, Frankfurt am Main*, volume 17.
- Smets, F. and Wouters, R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach. *American Economic Review*, 97:586–606.

Woodford, M. (2003). Interest and prices.

HOUSEHOLDS

• Consider a mass of households $l_t = l_{t-1} (l_T / l_{t-1})^{\ell_g}$, with convergence rate $\ell_g \in [0, 1]$ to population size $l_T \ge 0$;

The fraction ω of high productive workers receives a wage payments w_tn_{i,H,t};
The discounted Euler Equation for high and low productive workers {H, L}:

$$c_{i,H,t}^{-\sigma_c} = \mathbb{E}_t \left\{ \frac{\tilde{\beta}_{t,t+1}\varepsilon_{b,t+1}r_t}{\varepsilon_{b,t}\pi_{t+1}} \left((1-\omega) c_{i,H,t+1}^{-\sigma_c} + \omega c_{i,L,t+1}^{-\sigma_c} \right) \right\}$$
(7)
$$c_{i,L,t} = D_t$$
(8)

$$c_t = (1 - \omega) c_{H,t} + \omega c_{L,t} \tag{9}$$

► Labor supply equation:

$$w_t = \psi_t n_{i,H,t}^{\sigma_n} c_{i,H,t}^{\sigma_c}.$$
(10)

PRODUCTION

▶ Return

• Monopolistic firm j with production function:

$$y_{j,t} = z_t \Phi\left(m_t\right) \left(n_{j,t}^d\right)^\alpha \tag{11}$$

 $z_t = z_{t-1}(1 + g_{z,t})$ exogenous vanishing productivity with $g_{z,t} = g_{z,t-1}(1 - \delta_z)$

▶ Following Golosov et al. (2014), exponential economic damages:

$$\Phi(m_t) = \exp(-\gamma(m_t - m_{1750})) \tag{12}$$

 $m_t - m_{1750} \ge 0$ the excess carbon in the atmosphere $\gamma \ge 0$ the damage parameter

PRICING

 θ_1

▶ Pricing is addressed as a two stage problem.

▶ 1st stage: determination of the marginal cost

$$\max_{\{y_{j,t},\mu_{j,t}\}} mc_{j,t}y_{j,t} - \underbrace{w_t n_{j,t}^d}_{\text{labor cost}} - \underbrace{\theta_{1,t} \mu_{j,t}^{\theta_2} y_{j,t}}_{\text{Abatement cost}} - \underbrace{\tau_{e,t} e_{j,t}}_{\text{carbon tax}}$$
(13)
$$\theta_{1,t} = (p_b/\theta_2)(1-\delta_{pb})^{t-t_0}\sigma_t \text{ exogenous efficiency of abating carbon } (\theta_{1,2020} \simeq 0.1 \rightarrow 10\%)$$
of output lost if $\mu = 1$, it takes 40 years for $\theta_{1,t}$ to divide by factor 2)
 $\tau_{e,t}$ exogenous carbon tax.

Pricing

▶ 2nd stage: determination of selling price:

$$\max_{\{p_{j,t}\}} \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} \beta^s \omega_{j,t+s} \left(y_{j,t+s} \frac{p_{j,t+s}}{p_{t+s}} - \varepsilon_{p,t+s} m c_{t+s} y_{j,t+s} - \frac{\kappa}{2} \left(\frac{p_{j,t+s}}{p_{j,t-1+s}} - \pi^*_{t+s} \right)^2 \frac{y_{t+s}}{l_{t+s}} \right) \right\}$$

 $\varepsilon_{p,t}$ an AR(1) cost-push shock $\omega_{j,t} \in \{0,1\}$ an idiosyncratic exit shock with $\Pr(\omega_{j,t} = 0) = \vartheta$

Monetary policy rule as in the macro textbook:

$$r_t = r_{t-1}^{\rho} \left[r_r \frac{\pi_t^*}{\pi} \left(\frac{\pi_t}{\pi} \right)^{\phi_\pi} \left(\frac{y_t}{y_t^n} \right)^{\phi_y} \right]^{1-\rho} \left(\frac{\pi_t^*}{\pi_{t-1}^*} \right)^{\phi_*} \varepsilon_{r,t}$$
(14)

 $\varepsilon_{r,t}$ AR(1) shock

 ρ coefficient smoothing, inflation ϕ_{π} and output gap stances ϕ_y π inflation target, r long run rate and natural output y_t^n

▶ Return

CLIMATE

▶ Return

▶ The law of motion of atmospheric carbon stock (GtC):

$$m_t - m_{1750} = (1 - \delta_m)(m_{t-1} - m_{1750}) + \xi_m e_t, \tag{15}$$

 $\delta_m \in [0, 1]$ rate of transfer of atmospheric carbon to the deep ocean; $\xi_m \ge 0$ physical parameter translating GtCO₂ into GtC.

CO2 emissions are given by:

$$e_t = \sigma_t \left(1 - \mu_t \right) y_t \varepsilon_{e,t} \tag{16}$$

 $\begin{aligned} \sigma_t &= \sigma_{t-1}(1 - g_{\sigma,t}) \text{ decoupling rate of carbon emissions} \\ \varepsilon_{e,t} & \text{AR}(1) \text{ emission shock} \\ \mu_t & \text{abatement share} \end{aligned}$